scholarly journals All solutions of Einstein’s equations in 2+1 dimensions: Λ-vacuum, pure radiation, or gyratons

2018 ◽  
Vol 36 (1) ◽  
pp. 015009 ◽  
Author(s):  
Jiří Podolský ◽  
Robert Švarc ◽  
Hideki Maeda
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
William Davidson

A special nonaxisymmetric solution of Einstein’s equations is derived, representing pure radiation from a rotating isolated source. The spacetime is assumed to be algebraically special having a multiple null eigenvector of the Weyl tensor forming a geodesic, shear-free, diverging, and twisting congruence k. Employing a complex null tetrad involving the vector k, the Ricci tensor, density of the radiation, divergence, and twist are calculated for the derived metric. A particular (nonaxisymmetric) subcase is shown to be flat at infinity and to contain the axisymmetric radiating Kerr metric, derived by Kramer and separately by Vaidya and Patel, as a special case. The spacetime is of Petrov type II and without Killing vectors.


2002 ◽  
Vol 17 (20) ◽  
pp. 2762-2762
Author(s):  
E. GOURGOULHON ◽  
J. NOVAK

It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-"metric" (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this "metric", of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.


2006 ◽  
Vol 21 (18) ◽  
pp. 3727-3732 ◽  
Author(s):  
F. RAHAMAN ◽  
R. MONDAL ◽  
M. KALAM

We investigate a local cosmic string with a phenomenological energy–momentum tensor as prescribed by Vilenkin, in the presence of C-field. The solutions of full nonlinear Einstein's equations for exterior and interior regions of such a string are presented.


Sign in / Sign up

Export Citation Format

Share Document