scholarly journals Radial solutions to a chemotaxis-consumption model involving prescribed signal concentrations on the boundary

Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 719-749
Author(s):  
Johannes Lankeit ◽  
Michael Winkler

Abstract The chemotaxis system u t = Δ u − ∇ ⋅ ( u ∇ v ) , v t = Δ v − u v , is considered under the boundary conditions ∂ u ∂ ν − u ∂ v ∂ ν = 0 and v = v ⋆ on ∂Ω, where Ω ⊂ R n is a ball and v ⋆ is a given positive constant. In the setting of radially symmetric and suitably regular initial data, a result on global existence of bounded classical solutions is derived in the case n = 2, while global weak solutions are constructed when n ∈ {3, 4, 5}. This is achieved by analyzing an energy-type inequality reminiscent of global structures previously observed in related homogeneous Neumann problems. Ill-signed boundary integrals newly appearing therein are controlled by means of spatially localized smoothing arguments revealing higher order regularity features outside the spatial origin. Additionally, unique classical solvability in the corresponding stationary problem is asserted, even in nonradial frameworks.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanqin Zeng ◽  
Yu Gao ◽  
Xiaoping Xue

<p style='text-indent:20px;'>In this paper, we study the generalized modified Camassa-Holm (gmCH) equation via characteristics. We first change the gmCH equation for unknowns <inline-formula><tex-math id="M1">\begin{document}$ (u,m) $\end{document}</tex-math></inline-formula> into its Lagrangian dynamics for characteristics <inline-formula><tex-math id="M2">\begin{document}$ X(\xi,t) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ \xi\in\mathbb{R} $\end{document}</tex-math></inline-formula> is the Lagrangian label. When <inline-formula><tex-math id="M4">\begin{document}$ X_\xi(\xi,t)&gt;0 $\end{document}</tex-math></inline-formula>, we use the solutions to the Lagrangian dynamics to recover the classical solutions with <inline-formula><tex-math id="M5">\begin{document}$ m(\cdot,t)\in C_0^k(\mathbb{R}) $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M6">\begin{document}$ k\in\mathbb{N},\; \; k\geq1 $\end{document}</tex-math></inline-formula>) to the gmCH equation. The classical solutions <inline-formula><tex-math id="M7">\begin{document}$ (u,m) $\end{document}</tex-math></inline-formula> to the gmCH equation will blow up if <inline-formula><tex-math id="M8">\begin{document}$ \inf_{\xi\in\mathbb{R}}X_\xi(\cdot,T_{\max}) = 0 $\end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id="M9">\begin{document}$ T_{\max}&gt;0 $\end{document}</tex-math></inline-formula>. After the blow-up time <inline-formula><tex-math id="M10">\begin{document}$ T_{\max} $\end{document}</tex-math></inline-formula>, we use a double mollification method to mollify the Lagrangian dynamics and construct global weak solutions (with <inline-formula><tex-math id="M11">\begin{document}$ m $\end{document}</tex-math></inline-formula> in space-time Radon measure space) to the gmCH equation by some space-time BV compactness arguments.</p>


2017 ◽  
Vol 29 (3) ◽  
pp. 515-542 ◽  
Author(s):  
N. I. KAVALLARIS ◽  
T. RICCIARDI ◽  
G. ZECCA

We introduce a multi-species chemotaxis type system admitting an arbitrarily large number of population species, all of which are attracted versus repelled by a single chemical substance. The production versus destruction rates of the chemotactic substance by the species is described by a probability measure. For such a model, we investigate the variational structures, in particular, we prove the existence of Lyapunov functionals, we establish duality properties as well as a logarithmic Hardy–Littlewood–Sobolev type inequality for the associated free energy. The latter inequality provides the optimal critical value for the conserved total population mass.


2019 ◽  
Vol 150 (1) ◽  
pp. 73-102 ◽  
Author(s):  
Alberto Boscaggin ◽  
Francesca Colasuonno ◽  
Benedetta Noris

AbstractLet 1 < p < +∞ and let Ω ⊂ ℝN be either a ball or an annulus. We continue the analysis started in [Boscaggin, Colasuonno, Noris, ESAIM Control Optim. Calc. Var. (2017)], concerning quasilinear Neumann problems of the type $-\Delta _pu = f(u),\quad u > 0\,{\rm in }\,\Omega ,\quad \partial _\nu u = 0\,{\rm on }\,\partial \Omega .$We suppose that f(0) = f(1) = 0 and that f is negative between the two zeros and positive after. In case Ω is a ball, we also require that f grows less than the Sobolev-critical power at infinity. We prove a priori bounds of radial solutions, focussing in particular on solutions which start above 1. As an application, we use the shooting technique to get existence, multiplicity and oscillatory behaviour (around 1) of non-constant radial solutions.


Sign in / Sign up

Export Citation Format

Share Document