Investigation of the ejected mass during high-intensity laser solid interaction for improved plasma mirror generation

Author(s):  
Gregor F. H. Indorf ◽  
Graeme G Scott ◽  
Malte A. Ennen ◽  
Pierre Forestier-Colleoni ◽  
David Haddock ◽  
...  

Abstract The interaction of very intense and ultrashort laser pulses with solid targets is a topic that has attracted a large amount of interest in science and applications. This interest is boosted by the large progress made in the development of high repetition rate, high-power laser systems. With the significant increase in average power, there is concern about how to deal with ablated debris that may lead to contamination and damage during interaction experiments with solid targets. This issue is also highly relevant in experiments that include plasma mirrors. These are often employed to increase the contrast ratio of the intense laser pulse to unwanted laser pre-pulses from the amplifier chain and/or the background of amplified spontaneous emission. For this reason, the present work investigates the mass ejected from the target into vacuum for different conditions, particularly those present when plasma mirrors are introduced. The total amount of ablated mass can be reduced by making use of a temporally controlled plasma expansion that enhances the plasma mirror reflectivity. In this way, high intensity laser interaction experiments can be carried out with efficient and clean plasma mirrors significantly reducing the degradation of the laser optics and plasma diagnostics placed near the interaction.

Optica ◽  
2020 ◽  
Vol 7 (8) ◽  
pp. 995
Author(s):  
Helder M. Crespo ◽  
Tobias Witting ◽  
Miguel Canhota ◽  
Miguel Miranda ◽  
John W. G. Tisch

Author(s):  
K. M. George ◽  
J. T. Morrison ◽  
S. Feister ◽  
G. K. Ngirmang ◽  
J. R. Smith ◽  
...  

High-intensity laser–plasma interactions produce a wide array of energetic particles and beams with promising applications. Unfortunately, the high repetition rate and high average power requirements for many applications are not satisfied by the lasers, optics, targets, and diagnostics currently employed. Here, we aim to address the need for high-repetition-rate targets and optics through the use of liquids. A novel nozzle assembly is used to generate high-velocity, laminar-flowing liquid microjets which are compatible with a low-vacuum environment, generate little to no debris, and exhibit precise positional and dimensional tolerances. Jets, droplets, submicron-thick sheets, and other exotic configurations are characterized with pump–probe shadowgraphy to evaluate their use as targets. To demonstrate a high-repetition-rate, consumable, liquid optical element, we present a plasma mirror created by a submicron-thick liquid sheet. This plasma mirror provides etalon-like anti-reflection properties in the low field of 0.1% and high reflectivity as a plasma, 69%, at a repetition rate of 1 kHz. Practical considerations of fluid compatibility, in-vacuum operation, and estimates of maximum repetition rate are addressed. The targets and optics presented here demonstrate a potential technique for enabling the operation of laser–plasma interactions at high repetition rates.


1995 ◽  
Vol 51 (3) ◽  
pp. 2368-2389 ◽  
Author(s):  
C. G. Durfee ◽  
J. Lynch ◽  
H. M. Milchberg

2002 ◽  
Vol 20 (2) ◽  
pp. 321-336 ◽  
Author(s):  
DIMITRI BATANI

The paper reviews and analyses the experiments devoted to the propagation in dense matter of fast electrons produced in the interaction of short-pulse ultra-high-intensity laser pulses with solid density targets.


2004 ◽  
Vol 79 (8) ◽  
pp. 1041-1045 ◽  
Author(s):  
J. Schreiber ◽  
M. Kaluza ◽  
F. Grüner ◽  
U. Schramm ◽  
B.M. Hegelich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document