Rheological properties of silicon oil-based magnetic fluid with magnetic nanoparticles (MNPs)-multiwalled carbon nanotube (MWNT)

2019 ◽  
Vol 28 (6) ◽  
pp. 065023 ◽  
Author(s):  
Wenyi Li ◽  
Zhili Zhang ◽  
Decai Li
2007 ◽  
Vol 7 (11) ◽  
pp. 3847-3851 ◽  
Author(s):  
Sung-Hun Jin ◽  
Dai-Soo Lee

Electrical and rheological properties of nanocomposites based on poly(methyl methacrylate) (PMMA) and multiwalled carbon nanotube (MWCNT) were studied from view points of double percolation by adding crosslinked methyl methacrylate-butadiene-styrene (MBS) copolymer particles to lower percolation threshold concentration of MWCNTs. It was found that the critical concentrations of MWCNTs for the percolation in the nanocomposites decrease and then increase with increasing the MBS contents of the nanocomposites. It is postulated that the addition of MBS at low concentrations results in double percolation of MWCNT and the significant decrease of critical concentration for the percolations. However, adding MBS particles in large amounts results in limited space for the distribution of MWCNTs and less efficient dispersion of the MWCNTs and the increase of the critical concentrations of MWCNTs for the percolations. Rheological properties and change of Tgs reflect large interfacial areas in the well dispersed nanocomposite and were also interpreted to support the speculations for the effects of MBS contents and MWCNT concentrations of PMMA/MWCNT nanocomposites.


2020 ◽  
Vol 20 (5) ◽  
pp. 3148-3156 ◽  
Author(s):  
S. Nehru ◽  
Subramanian Sakthinathan ◽  
P. Tamizhdurai ◽  
Te-Wei Chiu ◽  
K. Shanthi

In the present work, a reduced graphene oxide and multiwalled carbon nanotube (RGO/MWCNTFe3O4) composite decorated with Fe3O4 magnetic nanoparticles was prepared as an electrochemical sensor. The surface morphology of the prepared composite was identified by scanning electron microscopy and X-ray diffraction. The electrochemical properties of the GCE/RGO/MWCNT-Fe3O4 electrode were investigated by electrochemical impedance spectroscopy, cyclic voltammetry and amperometry. The GCE/RGO/MWCNT-Fe3O4 electrode exhibited higher electrocatalytic performance towards the oxidation of hydrazine. In the optimal conditions, the GCE/RGO/MWCNT-Fe3O4 electrode showed a wide linear range (0.15–220 μM), low limit of detection (LOD) (0.75 μM), and high sensitivity (2.868 μA μM−1 cm−2). The prepared GCE/RGO/MWCNT-Fe3O4 electrode also had excellent repeatability, selectivity, and reproducibility. The practical application of the electrode was confirmed with various spiked water samples and demonstrated acceptable recovery.


2019 ◽  
Vol 30 (6) ◽  
pp. 1157-1160 ◽  
Author(s):  
Xiaoyun Lin ◽  
Yanfang Wang ◽  
Miaomiao Zou ◽  
Tianxiang Lan ◽  
Yongnian Ni

Sign in / Sign up

Export Citation Format

Share Document