scholarly journals A repeat-until-success quantum computing scheme

2007 ◽  
Vol 9 (6) ◽  
pp. 197-197 ◽  
Author(s):  
A Beige ◽  
Y L Lim ◽  
L C Kwek
2009 ◽  
Vol 9 (9&10) ◽  
pp. 721-738 ◽  
Author(s):  
A.G. Fowler ◽  
K. Goyal

The quantum computing scheme described by Raussendorf et. al (2007), when viewed as a cluster state computation, features a 3-D cluster state, novel adjustable strength error correction capable of correcting general errors through the correction of Z errors only, a threshold error rate approaching 1% and low overhead arbitrarily long-range logical gates. In this work, we review the scheme in detail framing the discussion solely in terms of the required 3-D cluster state and its stabilizers.


Author(s):  
Marta Sroczyńska ◽  
Anna Dawid ◽  
Michał Tomza ◽  
Zbigniew Idziaszek ◽  
Tommaso Calarco ◽  
...  

Abstract Ultracold molecules trapped in optical tweezers show great promise for the implementation of quantum technologies and precision measurements. We study a prototypical scenario where two interacting polar molecules placed in separate traps are controlled using an external electric field. This, for instance, enables a quantum computing scheme in which the rotational structure is used to encode the qubit states. We estimate the typical operation timescales needed for state engineering to be in the range of few microseconds. We further underline the important role of the spatial structure of the two-body states, with the potential for significant gate speedup employing trap-induced resonances.


2019 ◽  
Author(s):  
Mark Fingerhuth ◽  
Tomáš Babej ◽  
Peter Wittek

2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


2002 ◽  
Author(s):  
Giulio Casati ◽  
Carlo Beenakker ◽  
Tomaz Prozen ◽  
Philippe Jacquod ◽  
Giuliano Benenti

Sign in / Sign up

Export Citation Format

Share Document