ultracold molecules
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 25)

H-INDEX

40
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Donghui Li ◽  
Wensheng Bian

By means of highly accurate ab initio calculations, we identify two excellent ultracold molecular candidates from group VA hydrides. We find that NH and PH are suitable for the production of ultracold molecules, and the feasibility and advantage of two laser cooling schemes are demonstrated, which involve different spin-orbit states (A3Π2 and X3Σ1− ). The internally contracted multireference configuration interaction method is applied in calculations of the six low-lying Λ-S states of NH and PH with the spin-orbit coupling effects included, and excellent agreement is achieved between the computed and experimental spectroscopic data. We find that the locations of crossing point between the A3Π and Σ−5 states of NH and PH are higher than the corresponding v′ = 2 vibrational levels of the A3Π state indicating that the crossings with higher electronic states would not affect laser cooling. Meanwhile, the extremely small vibrational branching loss ratios of the A3Π2 → a1Δ2 transition for NH and PH (NH: 1.81 × 10–8; PH: 1.08 × 10–6) indicate that the a1Δ2 intermediate electronic state will not interfere with the laser cooling. Consequently, we construct feasible laser-cooling schemes for NH and PH using three lasers based on the A3Π2 → X3Σ1− transition, which feature highly diagonal vibrational branching ratio R00 (NH: 0.9952; PH: 0.9977), the large number of scattered photons (NH: 1.04×105; PH: 8.32×106) and very short radiative lifetimes (NH: 474 ns; PH: 526 ns). Our work suggests that feasible laser-cooling schemes could be established for a molecular system with extra electronic states close to those chosen for laser-cooling.


Author(s):  
Marta Sroczyńska ◽  
Anna Dawid ◽  
Michał Tomza ◽  
Zbigniew Idziaszek ◽  
Tommaso Calarco ◽  
...  

Abstract Ultracold molecules trapped in optical tweezers show great promise for the implementation of quantum technologies and precision measurements. We study a prototypical scenario where two interacting polar molecules placed in separate traps are controlled using an external electric field. This, for instance, enables a quantum computing scheme in which the rotational structure is used to encode the qubit states. We estimate the typical operation timescales needed for state engineering to be in the range of few microseconds. We further underline the important role of the spatial structure of the two-body states, with the potential for significant gate speedup employing trap-induced resonances.


Author(s):  
Yu Liu ◽  
Kang-Kuen Ni

Advances in atomic, molecular, and optical physics techniques allowed the cooling of simple molecules down to the ultracold regime ([Formula: see text]1 mK) and opened opportunities to study chemical reactions with unprecedented levels of control. This review covers recent developments in studying bimolecular chemistry at ultralow temperatures. We begin with a brief overview of methods for producing, manipulating, and detecting ultracold molecules. We then survey experimental works that exploit the controllability of ultracold molecules to probe and modify their long-range interactions. Further combining the use of physical chemistry techniques such as mass spectrometry and ion imaging significantly improved the detection of ultracold reactions and enabled explorations of their dynamics in the short range. We discuss a series of studies on the reaction KRb + KRb → K2 + Rb2 initiated below 1 [Formula: see text]K, including the direct observation of a long-lived complex, the demonstration of product rotational state control via conserved nuclear spins, and a test of the statistical model using the complete quantum state distribution of the products. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Jia K. Yao ◽  
Cooper A. Johnson ◽  
Nirav P. Mehta ◽  
Kaden R. A. Hazzard
Keyword(s):  

Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. 779-782
Author(s):  
Loïc Anderegg ◽  
Sean Burchesky ◽  
Yicheng Bao ◽  
Scarlett S. Yu ◽  
Tijs Karman ◽  
...  

Harnessing the potential wide-ranging quantum science applications of molecules will require control of their interactions. Here, we used microwave radiation to directly engineer and tune the interaction potentials between ultracold calcium monofluoride (CaF) molecules. By merging two optical tweezers, each containing a single molecule, we probed collisions in three dimensions. The correct combination of microwave frequency and power created an effective repulsive shield, which suppressed the inelastic loss rate by a factor of six, in agreement with theoretical calculations. The demonstrated microwave shielding shows a general route to the creation of long-lived, dense samples of ultracold polar molecules and evaporative cooling.


Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. 754.8-755
Author(s):  
Yury Suleymanov
Keyword(s):  

2021 ◽  
Vol 126 (15) ◽  
Author(s):  
S. Jurgilas ◽  
A. Chakraborty ◽  
C. J. H. Rich ◽  
L. Caldwell ◽  
H. J. Williams ◽  
...  

2021 ◽  
Author(s):  
Philip Gregory ◽  
Jacob Blackmore ◽  
Sarah Bromley ◽  
Jeremy Hutson ◽  
Simon Cornish

Abstract Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and storing quantum information. However, it is important to understand all sources of decoherence for these qubits, and then eliminate them, in order to reach the longest possible coherence times. Here, we fully characterise the dominant mechanisms for decoherence of a storage qubit in an optically trapped ultracold gas of RbCs molecules using high-resolution Ramsey spectroscopy. Guided by a detailed understanding of the hyperfine structure of the molecule, we tune the magnetic field to where a pair of hyperfine states have the same magnetic moment. These states form a qubit, which is insensitive to variations in magnetic field. Our experiments reveal an unexpected differential tensor light shift between the states, caused by weak mixing of rotational states. We demonstrate how this light shift can be eliminated by setting the angle between the linearly polarised trap light and the applied magnetic field to a magic angle of arccos(1/√3)≈55°. This leads to a coherence time exceeding 6.9 s (90% confidence level). Our results unlock the potential of ultracold molecules as a platform for quantum computation.


Author(s):  
N. J. Fitch ◽  
M. R. Tarbutt

AbstractOver the past century, the molecular beam methods pioneered by Otto Stern have advanced our knowledge and understanding of the world enormously. Stern and his colleagues used these new techniques to measure the magnetic dipole moments of fundamental particles with results that challenged the prevailing ideas in fundamental physics at that time. Similarly, recent measurements of fundamental electric dipole moments challenge our present day theories of what lies beyond the Standard Model of particle physics. Measurements of the electron’s electric dipole moment (eEDM) rely on the techniques invented by Stern and later developed by Rabi and Ramsey. We give a brief review of this historical development and the current status of eEDM measurements. These experiments, and many others, are likely to benefit from ultracold molecules produced by laser cooling. We explain how laser cooling can be applied to molecules, review recent progress in this field, and outline some eagerly anticipated applications.


Sign in / Sign up

Export Citation Format

Share Document