scholarly journals Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme

2016 ◽  
Vol 2016 (01) ◽  
pp. 011-011 ◽  
Author(s):  
Michele Levi ◽  
Jan Steinhoff
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Michèle Levi ◽  
Andrew J. McLeod ◽  
Matthew von Hippel

Abstract In this paper we derive for the first time the N3LO gravitational spin-orbit coupling at order G4 in the post-Newtonian (PN) approximation within the effective field theory (EFT) of gravitating spinning objects. This represents the first computation in a spinning sector involving three-loop integration. We provide a comprehensive account of the topologies in the worldline picture for the computation at order G4. Our computation makes use of the publicly-available EFTofPNG code, which is extended using loop-integration techniques from particle amplitudes. We provide the results for each of the Feynman diagrams in this sector. The three-loop graphs in the worldline picture give rise to new features in the spinning sector, including divergent terms and logarithms from dimensional regularization, as well as transcendental numbers, all of which survive in the final result of the topologies at this order. This result enters at the 4.5PN order for maximally-rotating compact objects, and together with previous work in this line, paves the way for the completion of this PN accuracy.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Fabian Müller ◽  
Akaki Rusetsky

Abstract Using non-relativistic effective field theory, we derive a three-particle analog of the Lellouch-Lüscher formula at the leading order. This formula relates the three-particle decay amplitudes in a finite volume with their infinite-volume counterparts and, hence, can be used to study the three-particle decays on the lattice. The generalization of the approach to higher orders is briefly discussed.


2013 ◽  
Vol 915 ◽  
pp. 24-58 ◽  
Author(s):  
J. Haidenbauer ◽  
S. Petschauer ◽  
N. Kaiser ◽  
U.-G. Meißner ◽  
A. Nogga ◽  
...  

2018 ◽  
Vol 98 (4) ◽  
Author(s):  
Ning Li ◽  
Serdar Elhatisari ◽  
Evgeny Epelbaum ◽  
Dean Lee ◽  
Bing-Nan Lu ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Tyler Corbett

Making use of the geometric formulation of the Standard Model Effective Field Theory we calculate the one-loop tadpole diagrams to all orders in the Standard Model Effective Field Theory power counting. This work represents the first calculation of a one-loop amplitude beyond leading order in the Standard Model Effective Field Theory, and discusses the potential to extend this methodology to perform similar calculations of observables in the near future.


2017 ◽  
Vol 53 (5) ◽  
Author(s):  
Jose Manuel Alarcón ◽  
Dechuan Du ◽  
Nico Klein ◽  
Timo A. Lähde ◽  
Dean Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document