particle decays
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Rodolfo Capdevilla ◽  
Federico Meloni ◽  
Rosa Simoniello ◽  
Jose Zurita

Abstract We study the capabilities of a muon collider experiment to detect disappearing tracks originating when a heavy and electrically charged long-lived particle decays via X+→ Y+Z0, where X+ and Z0 are two almost mass degenerate new states and Y+ is a charged Standard Model particle. The backgrounds induced by the in-flight decays of the muon beams (BIB) can create detector hit combinations that mimic long-lived particle signatures, making the search a daunting task. We design a simple strategy to tame the BIB, based on a detector-hit-level selection exploiting timing information and hit-to-hit correlations, followed by simple requirements on the quality of reconstructed tracks. Our strategy allows us to reduce the number of tracks from BIB to an average of 0.08 per event, hence being able to design a cut-and-count analysis that shows that it is possible to cover weak doublets and triplets with masses close to $$ \sqrt{s}/2 $$ s / 2 in the 0.1–10 ns range. In particular, this implies that a 10 TeV muon collider is able to probe thermal MSSM higgsinos and thermal MSSM winos, thus rivaling the FCC-hh in that respect, and further enlarging the physics program of the muon collider into the territory of WIMP dark matter and long-lived signatures. We also provide parton-to-reconstructed level efficiency maps, allowing an estimation of the coverage of disappearing tracks at muon colliders for arbitrary models.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Tanmay Vachaspati ◽  
Alexander Vilenkin

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Masahiro Ibe ◽  
Shin Kobayashi ◽  
Yuhei Nakayama ◽  
Satoshi Shirai

Abstract Recently, the chiral superconductivity of the cosmic string in the axion model has gathered attention. The superconductive nature can alter the standard understanding of the cosmology of the axion model. For example, a string loop with a sizable super-conducting current can become a stable configuration, which is called a Vorton. The superconductive nature can also affect the cosmological evolution of the string network. In this paper, we study the stability of the superconducting current in the string. We find the superconductivity is indeed stable for a straight string or infinitely small string core size, even if the carrier particles are unstable in the vacuum. However we also find that the carrier particle decays in a curved string in typical axion models, if the carrier particles are unstable in the vacuum. Accordingly, the lifetime of the Vorton is not far from that of the carrier particle in the vacuum.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Maxwell T. Hansen ◽  
Fernando Romero-López ◽  
Stephen R. Sharpe

Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Lüscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K → 3π weak decay, the isospin-breaking η → 3π QCD transition, and the electromagnetic γ* → 3π amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g − 2.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Fabian Müller ◽  
Akaki Rusetsky

Abstract Using non-relativistic effective field theory, we derive a three-particle analog of the Lellouch-Lüscher formula at the leading order. This formula relates the three-particle decay amplitudes in a finite volume with their infinite-volume counterparts and, hence, can be used to study the three-particle decays on the lattice. The generalization of the approach to higher orders is briefly discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Daniele Marangotto

We present the general expression of helicity amplitudes for generic multibody particle decays characterised by multiple decay chains. This is achieved by addressing for the first time the issue of the matching of the final particle spin states among different decay chains in full generality for generic multibody decays, proposing a method able to match the exact definition of spin states relative to the decaying particle ones. We stress the importance of our result by showing that one of the matching methods used in the literature is incorrect, leading to amplitude models violating rotational invariance. The results presented are therefore relevant for performing numerous amplitude analyses, notably those searching for exotic structures like pentaquarks.


2020 ◽  
Vol 17 (6) ◽  
pp. 856-870
Author(s):  
A. I. Zinchenko ◽  
S. N. Igolkin ◽  
V. P. Kondratiev ◽  
Yu. A. Murin

2020 ◽  
Vol 102 (1) ◽  
Author(s):  
T. B. Webb ◽  
R. J. Charity ◽  
J. M. Elson ◽  
D. E. M. Hoff ◽  
C. D. Pruitt ◽  
...  

2020 ◽  
Vol 35 (33) ◽  
pp. 2030016
Author(s):  
Xiao-Ming Xu ◽  
H. J. Weber

We review studies of inelastic meson-meson scattering. In nonperturbative schemes with chiral-perturbation-theory Lagrangians and in models based on effective meson Lagrangians, inelastic meson-meson scattering leads to the successful identification of resonances in meson-meson reactions, adequate inclusion of final state interactions in particle decays, and so on. For mesons of which each consists of a quark and an antiquark, inelastic meson-meson scattering may be caused by quark-antiquark annihilation, quark-antiquark creation, quark interchange, and quark-antiquark annihilation and creation. In transition amplitudes for meson-meson scattering mesonic quark-antiquark relative-motion wave functions depend on hadronic matter, and transition potentials are given in perturbative quantum chromodynamics. Via transition amplitudes the cross sections for inelastic meson-meson scattering depend on the temperature of hadronic matter. Some prominent temperature dependence of the cross sections has been found. Inelastic meson-meson scattering becomes even more significant in proton-proton collisions and lead-lead collisions at the Large Hadron Collider.


Sign in / Sign up

Export Citation Format

Share Document