New exact solutions of the Einstein—Maxwell equations for magnetostatic fields

2012 ◽  
Vol 21 (9) ◽  
pp. 090401 ◽  
Author(s):  
Nisha Goyal ◽  
R.K. Gupta
2013 ◽  
Vol 22 (02) ◽  
pp. 1350009 ◽  
Author(s):  
LI ZOU ◽  
FANG-YU LI ◽  
HAO WEN

Exact solutions of the Einstein–Maxwell equations for spherically symmetric charged perfect fluid have been broadly studied so far. However, the cases with a nonzero cosmological constant are seldom focused. In the present paper, the Tolman–Oppenheimer–Volkoff (TOV) equations have been generalized from the neutral case of hydrostatic equilibrium to the charged case of hydroelectrostatic equilibrium, and base on it, for the first time we find a series of new exact solutions of Einstein–Maxwell's equations with a nonzero cosmological constant for static charged perfect fluid spheres. Moreover, two special TOV equations and two classical constant density interior solutions are also given.


1989 ◽  
Vol 6 (3) ◽  
pp. L41-L44 ◽  
Author(s):  
T I Gutsnaev ◽  
V S Manko ◽  
S L Elsgolts

Author(s):  
Sobia Younus

<span>Some new exact solutions to the equations governing the steady plane motion of an in compressible<span> fluid of variable viscosity for the chosen form of the vorticity distribution are determined by using<span> transformation technique. In this case the vorticity distribution is proportional to the stream function<span> perturbed by the product of a uniform stream and an exponential stream<br /><br class="Apple-interchange-newline" /></span></span></span></span>


Sign in / Sign up

Export Citation Format

Share Document