scholarly journals Residual symmetry reductions and interaction solutions of the (2+1)-dimensional Burgers equation

2015 ◽  
Vol 24 (1) ◽  
pp. 010203
Author(s):  
Xi-Zhong Liu ◽  
Jun Yu ◽  
Bo Ren ◽  
Jian-Rong Yang
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lamine Thiam ◽  
Xi-zhong Liu

The residual symmetry of a (1 + 1)-dimensional nonlinear evolution equation (NLEE) ut+uxxx−6u2ux+6λux=0 is obtained through Painlevé expansion. By introducing a new dependent variable, the residual symmetry is localized into Lie point symmetry in an enlarged system, and the related symmetry reduction solutions are obtained using the standard Lie symmetry method. Furthermore, the (1 + 1)-dimensional NLEE equation is proved to be integrable in the sense of having a consistent Riccati expansion (CRE), and some new Bäcklund transformations (BTs) are given. In addition, some explicitly expressed solutions including interaction solutions between soliton and cnoidal waves are derived from these BTs.


2017 ◽  
Vol 72 (3) ◽  
pp. 217-222 ◽  
Author(s):  
Jin-Xi Fei ◽  
Wei-Ping Cao ◽  
Zheng-Yi Ma

AbstractThe non-local residual symmetry for the classical Korteweg-de Vries equation is derived by the truncated Painlevé analysis. This symmetry is first localised to the Lie point symmetry by introducing the auxiliary dependent variables. By using Lie’s first theorem, we then obtain the finite transformation for the localised residual symmetry. Based on the consistent tanh expansion method, some exact interaction solutions among different non-linear excitations are explicitly presented finally. Some special interaction solutions are investigated both in analytical and graphical ways at the same time.


Sign in / Sign up

Export Citation Format

Share Document