Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system

2020 ◽  
Vol 29 (5) ◽  
pp. 054211
Author(s):  
Kalan Mal ◽  
Khairul Islam ◽  
Suman Mondal ◽  
Dipankar Bhattacharyya ◽  
Amitava Bandyopadhyay
2021 ◽  
Author(s):  
Zeeshan Ali Safdar Jadoon ◽  
Heung-Ryoul Noh ◽  
Jin-Tae Kim

Abstract Optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of 85Rb D2 transition that involves the Doppler broadening effect are solved herein. The calculated spectra agree well with the experimental results obtained using the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open Fg = 3 → Fe = 2 and 3 transitions (open Fg = 2 → Fe = 2 and 3 transitions) are clearly determined to be the effect of the strong closed Fg = 3 → Fe = 4 transition line (strong closed Fg = 2 → Fe = 1 transition line) based on the comparisons of the calculated absorption profiles of a DTLS without neighboring states and those of all levels with neighboring states depending on the coupling and probe power ratios. The crucial factors established based on comparisons of the calculated absorption profiles of DTLS with and without neighboring states, which enhance or reduce coherence effects and result in transformation between electromagnetically induced absorption and electromagnetically induced transparency, are the power ratios between coupling and probe beams, openness of the excited state, and effects of the neighboring states due to the Doppler broadening in a real atomic system.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zeeshan Ali Safdar Jadoon ◽  
Heung-Ryoul Noh ◽  
Jin-Tae Kim

AbstractIn this study, optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of $$^{85}$$ 85 Rb D2 transition, which involves the Doppler broadening effect, are solved. The calculated spectra agree well with the experimental results obtained based on the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open $$F_g=3 \rightarrow F_e=2$$ F g = 3 → F e = 2 and 3 transitions (open $$F_g=2 \rightarrow F_e=2$$ F g = 2 → F e = 2 and 3 transitions) are determined to be the effect of the strong closed $$F_g=3 \rightarrow F_e=4$$ F g = 3 → F e = 4 transition line (strong closed $$F_g=2 \rightarrow F_e=1$$ F g = 2 → F e = 1 transition line); this finding is based on a comparison between the calculated absorption profiles of the DTLS without neighboring states and those of all levels with neighboring states, depending on the coupling and probe power ratios. Furthermore, based on the aforementioned comparison, the crucial factors that enhance or reduce the coherence effects and lead to the transformation between electromagnetically induced absorption and electromagnetically induced transparency, are (1) the power ratios between the coupling and probe beams, (2) the openness of the excited state, and (3) effects of the neighboring states due to Doppler broadening in a real atomic system.


2019 ◽  
Vol 64 (3) ◽  
pp. 197
Author(s):  
R. Hazra ◽  
Md.M. Hossain

We have theoretically studied the atomic populations, electromagnetically induced transparency (EIT), and dispersion in a three-level Λ-type system. The density matrix equations are set up with regard for the relaxation of populations of the ground states, and the optical Bloch equations are solved analytically in the weak probe field approximation. Decoherence effects in the ground and excited states on the EIT line shape and dispersive signals are studied, and it is found that the EIT line width increases and the peak height decreases, as the decoherence rates increase in the ground and excited states. On the other hand, we have observed that the dispersive signals are steeper and of high contrast for the lower decoherence rates in the ground and excited states. We have also analyzed the variations of atomic populations of the energy levels at the pump Rabi frequency, as well as the decoherence rate in the ground state.


2011 ◽  
Vol 60 (11) ◽  
pp. 114207
Author(s):  
Yang Bao-Dong ◽  
Gao Jing ◽  
Wang Jie ◽  
Zhang Tian-Cai ◽  
Wang Jun-Min

Sign in / Sign up

Export Citation Format

Share Document