scholarly journals Unravelling the Mechanisms of Electromagnetically Induced Absorption and Transparency in Open Degenerate Multilevel System: Effects of Neighboring Transitions

Author(s):  
Zeeshan Ali Safdar Jadoon ◽  
Heung-Ryoul Noh ◽  
Jin-Tae Kim

Abstract Optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of 85Rb D2 transition that involves the Doppler broadening effect are solved herein. The calculated spectra agree well with the experimental results obtained using the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open Fg = 3 → Fe = 2 and 3 transitions (open Fg = 2 → Fe = 2 and 3 transitions) are clearly determined to be the effect of the strong closed Fg = 3 → Fe = 4 transition line (strong closed Fg = 2 → Fe = 1 transition line) based on the comparisons of the calculated absorption profiles of a DTLS without neighboring states and those of all levels with neighboring states depending on the coupling and probe power ratios. The crucial factors established based on comparisons of the calculated absorption profiles of DTLS with and without neighboring states, which enhance or reduce coherence effects and result in transformation between electromagnetically induced absorption and electromagnetically induced transparency, are the power ratios between coupling and probe beams, openness of the excited state, and effects of the neighboring states due to the Doppler broadening in a real atomic system.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zeeshan Ali Safdar Jadoon ◽  
Heung-Ryoul Noh ◽  
Jin-Tae Kim

AbstractIn this study, optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of $$^{85}$$ 85 Rb D2 transition, which involves the Doppler broadening effect, are solved. The calculated spectra agree well with the experimental results obtained based on the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open $$F_g=3 \rightarrow F_e=2$$ F g = 3 → F e = 2 and 3 transitions (open $$F_g=2 \rightarrow F_e=2$$ F g = 2 → F e = 2 and 3 transitions) are determined to be the effect of the strong closed $$F_g=3 \rightarrow F_e=4$$ F g = 3 → F e = 4 transition line (strong closed $$F_g=2 \rightarrow F_e=1$$ F g = 2 → F e = 1 transition line); this finding is based on a comparison between the calculated absorption profiles of the DTLS without neighboring states and those of all levels with neighboring states, depending on the coupling and probe power ratios. Furthermore, based on the aforementioned comparison, the crucial factors that enhance or reduce the coherence effects and lead to the transformation between electromagnetically induced absorption and electromagnetically induced transparency, are (1) the power ratios between the coupling and probe beams, (2) the openness of the excited state, and (3) effects of the neighboring states due to Doppler broadening in a real atomic system.


2013 ◽  
Vol 27 (11) ◽  
pp. 1350037 ◽  
Author(s):  
SOMIA ABD-ELNABI ◽  
K. I. OSMAN

The influence of Doppler broadening on a four-level N-type atomic system has been investigated in the presence of spontaneous generating coherence. The atomic system interacting with three electromagnetic fields and includes the nonradiative decay, the effect of co- and counter-propagation of the fields is considered. The probe susceptibility behaviors can be modified by Doppler broadening via nonperturbative treatments of the density matrix elements solution in the absence and presence of the spontaneous generating coherence. Some interesting features are enhanced for the spectral behaviors and controllability of electromagnetically induced transparency, which were found to be in good agreement to some experimental results without including Zeeman sublevels to the system.


2021 ◽  
Vol 13 (3) ◽  
pp. 52
Author(s):  
Nguyen Tuan Anh ◽  
Nguyen Huy Bang ◽  
Doai Van Le

We found the analytical expression for cross-Kerr nonlinear coefficient in a four-level Y-type atomic system. The analytical model is applied to 85Rb atoms and shown that under electromagnetically induced transparency, cross-Kerr nonlinear coefficient is enhanced by several orders of magnitude. At the same time, the amplitude and the sign of cross-Kerr nonlinear coefficient are controlled with respect to the intensity and the frequency of the coupling laser field. The analytical model can be useful to explain the experimental results and to study related effects in nonlinear optics. Full Text: PDF ReferencesC. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, P. Tombesi, "Polarization Qubit Phase Gate in Driven Atomic Media", Phys. Rev. Lett. 90, 197902 (2003). CrossRef C. Zhu, G. Huang, "Giant Kerr Nonlinearity, Controlled Entangled Photons and Polarization Phase Gates in Coupled Quantum-Well Structures", Opt. Express 19, 23364 (2011). CrossRef C. Hang, G. Huang, "Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet", Opt. Express 18(3), 2952 (2010). CrossRef M. Fleischhauer, I. Mamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media", Rev. Mod. Phys. 77, 633 (2005). CrossRef H. Schmidt, And A. Imamogdlu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency", Opt. Lett., 21(23), 1936 (1996). CrossRef H. Kang And Y. Zhu, Phys. "Observation of Large Kerr Nonlinearity at Low Light Intensities", Rev. Lett., 91, 093601 (2003). CrossRef J. Kou, R. G. Wan, Z. H. Kang, H. H. Wang, L. Jiang, X. J. Zhang, Y. Jiang, and J. Y. Gao, "EIT-assisted large cross-Kerr nonlinearity in a four-level inverted-Y atomic system", J. Opt. Soc. Am. B. 27(10), 2035 (2010). CrossRef X. Yang, S. Li, C. Zhang, and H. Wang, "Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system", J. Opt. Soc. Am. B. 26(7), 1423 (2009). CrossRef C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti and P. Tombesi, "Polarization Qubit Phase Gate in Driven Atomic Media", Phys. Rev. Lett. 90, 197902 (2003). CrossRef H. Sun, Y. Niu, S. Jin and S. Gong, "Phase control of cross-phase modulation with electromagnetically induced transparency", J. Phys. B: At. Mol. Opt. Phys. 40, 3037 (2007). CrossRef L.V. Doai, P.V. Trong, D.X. Khoa, and N.H. Bang, "Electromagnetically induced transparency in five-level cascade scheme of 85Rb atoms: An analytical approach", Optik, 125, 3666 (2014). CrossRef D. X. Khoa, P. V. Trong, L. V. Doai and N. H. Bang, "Electromagnetically induced transparency in a five-level cascade system under Doppler broadening: an analytical approach", Phys, Scr. 91, 035401 (2016). CrossRef D.X. Khoa, L.C. Trung, P.V. Thuan, L.V. Doai and N.H. Bang, "Measurement of dispersive profile of a multiwindow electromagnetically induced transparency spectrum in a Doppler-broadened atomic medium", J. Opt. Soc. Am. B 34 (6), 1255 (2017). CrossRef D. X. Khoa, L. V. Doai, D. H. Son, and N. H. Bang, "Enhancement of self-Kerr nonlinearity via electromagnetically induced transparency in a five-level cascade system: an analytical approach", J. Opt. Soc. Am. B., 31, 1330 (2014). CrossRef L.V. Doai, N.L.T. An, D.X. Khoa, V.N. Sau and N.H. Bang, "Manipulating giant cross-Kerr nonlinearity at multiple frequencies in an atomic gaseous medium", J. Opt. Soc. Am. B 36, 2856 (2019). CrossRef D. X. Khoa, L. V. Doai, L. N. M. Anh, L. C. Trung, P. V. Thuan, N. T. Dung, and N. H. Bang, "Optical bistability in a five-level cascade EIT medium: an analytical approach", J. Opt. Soc. Am. B, Vol. 33, 735 (2016). CrossRef N. T. Anh, L. V. Doai, and N. H. Bang, "Manipulating multi-frequency light in a five-level cascade-type atomic medium associated with giant self-Kerr nonlinearity", J. Opt. Soc. Am. B 35, 1233 (2018). CrossRef N. T. Anh, L. V. Doai, D. H. Son, and N. H. Bang, "Manipulating multi-frequency light in a five-level cascade EIT medium under Doppler broadening", Optik 171, 721 (2018). CrossRef D.A. Steck, Rb85 D Line Data: http://Steck.Us/Alkalidata/rubidium85numbers.pdf CrossRef


2020 ◽  
Vol 29 (5) ◽  
pp. 054211
Author(s):  
Kalan Mal ◽  
Khairul Islam ◽  
Suman Mondal ◽  
Dipankar Bhattacharyya ◽  
Amitava Bandyopadhyay

2021 ◽  
Vol 16 (5) ◽  
pp. 786-790
Author(s):  
Yan Zhang ◽  
Yuanyuan Li ◽  
Minru Hao ◽  
Yunzhe Zhang

We illustrate the experimental observations of Autler-Townes splitting and the spatial splitting in an electromagnetically induced transparency window in a atomic vapor system of D1 line. As the power of the dressing laser beam changes, we study first-order and secondary Autler-Townes splitting. The influences of these dressing beams, which lead to the larger spatial splitting of four-wave mixing and the shift of probe transmission signal with by changing frequency detuning. Studies on such controllable Autler-Townes splitting and spatial splitting effect can be very useful in applications of spatial signal processing and optical communication.


Sign in / Sign up

Export Citation Format

Share Document