scholarly journals The Five Columns Rule in Solving Definite Integration by Parts Through Transformation of Integral Limits

2018 ◽  
Vol 1028 ◽  
pp. 012109 ◽  
Author(s):  
Mardeli Jandja ◽  
Mohammad Lutfi
1990 ◽  
Vol 16 (1) ◽  
pp. 34
Author(s):  
Henstock
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
pp. 1301-1315
Author(s):  
Eduardo Cuesta ◽  
Mokhtar Kirane ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

Abstract We consider a fractional derivative with order varying in time. Then, we derive for it a Leibniz' inequality and an integration by parts formula. We also study an initial value problem with our time variable order fractional derivative and present a regularity result for it, and a study on the asymptotic behavior.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Bakul Agarwal ◽  
Federico Buccioni ◽  
Andreas von Manteuffel ◽  
Lorenzo Tancredi

Abstract We present the leading colour and light fermionic planar two-loop corrections for the production of two photons and a jet in the quark-antiquark and quark-gluon channels. In particular, we compute the interference of the two-loop amplitudes with the corresponding tree level ones, summed over colours and polarisations. Our calculation uses the latest advancements in the algorithms for integration-by-parts reduction and multivariate partial fraction decomposition to produce compact and easy-to-use results. We have implemented our results in an efficient C++ numerical code. We also provide their analytic expressions in Mathematica format.


2018 ◽  
Vol 18 (2) ◽  
pp. 871-897 ◽  
Author(s):  
Stefano Bonaccorsi ◽  
Giuseppe Da Prato ◽  
Luciano Tubaro

2003 ◽  
Vol 01 (02) ◽  
pp. 213-241 ◽  
Author(s):  
R. WONG ◽  
Y.-Q. ZHAO

There are now several ways to derive an asymptotic expansion for [Formula: see text], as n → ∞, which holds uniformly for [Formula: see text]. One of these starts with a contour integral, involves a transformation which takes this integral into a canonical form, and makes repeated use of an integration-by-parts technique. There are two advantages to this approach: (i) it provides a recursive formula for calculating the coefficients in the expansion, and (ii) it leads to an explicit expression for the error term. In this paper, we point out that the estimate for the error term given previously is not sufficient for the expansion to be regarded as genuinely uniform for θ near the origin, when one takes into account the behavior of the coefficients near θ = 0. Our purpose here is to use an alternative method to estimate the remainder. First, we show that the coefficients in the expansion are bounded for [Formula: see text]. Next, we give an estimate for the error term which is of the same order as the first neglected term.


Sign in / Sign up

Export Citation Format

Share Document