variable order fractional derivative
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
MohammadHossein Derakhshan

In this article, a numerical method based on the shifted Chebyshev functions for the numerical approximation of the coupled nonlinear variable-order fractional sine-Gordon equations is shown. The variable-order fractional derivative is considered in the sense of Caputo-Prabhakar. To solve the problem, first, we obtain the operational matrix of the Caputo-Prabhakar fractional derivative of shifted Chebyshev polynomials. Then, this matrix and collocation method are used to reduce the solution of the nonlinear coupled variable-order fractional sine-Gordon equations to a system of algebraic equations which is technically simpler for handling. Convergence and error analysis are examined. Finally, some examples are given to test the proposed numerical method to illustrate the accuracy and efficiency of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
MohammadHossein Derakhshan

In this article, a numerical technique based on the Chebyshev cardinal functions (CCFs) and the Lagrange multiplier technique for the numerical approximation of the variable-order fractional integrodifferential equations are shown. The variable-order fractional derivative is considered in the sense of regularized Hilfer-Prabhakar and Hilfer-Prabhakar fractional derivatives. To solve the problem, first, we obtain the operational matrix of the regularized Hilfer-Prabhakar and Hilfer-Prabhakar fractional derivatives of CCFs. Then, this matrix and collocation method are used to reduce the solution of the nonlinear coupled variable-order fractional integrodifferential equations to a system of algebraic equations which is technically simpler for handling. Convergence and error analysis are examined. Finally, some examples are given to test the proposed numerical method to illustrate its accuracy and efficiency.


2021 ◽  
Vol 10 (1) ◽  
pp. 1301-1315
Author(s):  
Eduardo Cuesta ◽  
Mokhtar Kirane ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

Abstract We consider a fractional derivative with order varying in time. Then, we derive for it a Leibniz' inequality and an integration by parts formula. We also study an initial value problem with our time variable order fractional derivative and present a regularity result for it, and a study on the asymptotic behavior.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Li Wu ◽  
Zhouhong Li ◽  
Yuan Zhang ◽  
Binggeng Xie

In this paper, a fractional-order land model with Holling-II type transformation rate and time delay is investigated. First of all, the variable-order fractional derivative is defined in the Caputo type. Second, by applying time delay as the bifurcation parameter, some criteria to determine the stability and Hopf bifurcation of the model are presented. It turns out that the time delay can drive the model to be oscillatory, even when its steady state is stable. Finally, one numerical example is proposed to justify the validity of theoretical analysis. These results may provide insights to the development of a reasonable strategy to control land-use change.


Sign in / Sign up

Export Citation Format

Share Document