scholarly journals Wave Induced Oscillation in an Irregular Domain by using Hybrid Finite Element Model

2018 ◽  
Vol 1039 ◽  
pp. 012019
Author(s):  
Prashant Kumar ◽  
Rajni ◽  
Rupali
2013 ◽  
Vol 554-557 ◽  
pp. 484-491 ◽  
Author(s):  
Alexander S. Petrov ◽  
James A. Sherwood ◽  
Konstantine A. Fetfatsidis ◽  
Cynthia J. Mitchell

A hybrid finite element discrete mesoscopic approach is used to model the forming of composite parts using a unidirectional glass prepreg non-crimp fabric (NCF). The tensile behavior of the fabric is represented using 1-D beam elements, and the shearing behavior is captured using 2-D shell elements into an ABAQUS/Explicit finite element model via a user-defined material subroutine. The forming of a hemisphere is simulated using a finite element model of the fabric, and the results are compared to a thermostamped part as a demonstration of the capabilities of the used methodology. Forming simulations using a double-dome geometry, which has been used in an international benchmarking program, were then performed with the validated finite element model to explore the ability of the unidirectional fabric to accommodate the presence of interlaminate cabling.


1986 ◽  
Vol 1 (20) ◽  
pp. 150
Author(s):  
Shinn-Chung Liang

The objective of the present study is concerned with the numerical prediction of wave patterns and wave induced currents adjacent to a breakwater. The wave theory used is that of Berkhoff's (1972) mild slope wave equation with effects of diffraction, refraction and reflection described as Bettess, Liang and Bettess (1984). A finite element model is applied with appropriate boundary conditions. The singularity in the velocity at the tip of the breakwater is modelled effectively using the technique of Henshell and Shaw (1975), originally developed for elasticity. In the case of waves induced currents a potential representation of velocity in the fluid has be€>n used to derive a set of radiation stress expressions based on the theory of Longuet-Higgins (1964, 1970a,b), which are for an arbitrary wave pattern and the bottom variation. These expressions used account for the mean sea level and satisfy Mei's (1973) static balance of momentum flux. The radiation stress is applied to obtain forcing terms for use in a shallow water equation in conjunction with limiting ratio wave breaking where wave height, wave period, wave steepness and beach slope may be considered. Finally, an offshore breakwater on a beach for shore protection has been applied in a complete finite element model to predict both wave pattern and nearshore currents. Two angles of wave incidence are chosen. A series result has been produced.


2020 ◽  
Vol S-I (2) ◽  
pp. 224-229
Author(s):  
S. Ryabushkin ◽  

This paper identifies trim & draft parameters (spatial trimming) of a real fast boat with low-capacity motor, mostly running as a displacement vessel. The paper discusses various loading cases and calculates integral parameters in still water and regular waves (of various frequencies and incidence angles) for the ship at standstill and running at different speeds, also giving response-amplitude operators (RAOs) of motions and wave-induced moments. The study also gives calculation results for threedimensional fields of hydrostatic and hydrodynamic pressures and acceleration for further analysis of stress-strain state taking into account that finite-element model has no supports. High compliance (both global and local) of non-metal hull implies that the procedure suggested in this paper could be experimentally validated in future.


Sign in / Sign up

Export Citation Format

Share Document