radiation stress
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 34)

H-INDEX

27
(FIVE YEARS 2)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Anja Mavrič Čermelj ◽  
Aleksandra Golob ◽  
Katarina Vogel-Mikuš ◽  
Mateja Germ

Due to climate change, plants are being more adversely affected by heatwaves, floods, droughts, and increased temperatures and UV radiation. This review focuses on enhanced UV-B radiation and drought, and mitigation of their adverse effects through silicon addition. Studies on UV-B stress and addition of silicon or silicon nanoparticles have been reported for crop plants including rice, wheat, and soybean. These have shown that addition of silicon to plants under UV-B radiation stress increases the contents of chlorophyll, soluble sugars, anthocyanins, flavonoids, and UV-absorbing and antioxidant compounds. Silicon also affects photosynthesis rate, proline content, metal toxicity, and lipid peroxidation. Drought is a stress factor that affects normal plant growth and development. It has been frequently reported that silicon can reduce stress caused by different abiotic factors, including drought. For example, under drought stress, silicon increases ascorbate peroxidase activity, total soluble sugars content, relative water content, and photosynthetic rate. Silicon also decreases peroxidase, catalase, and superoxide dismutase activities, and malondialdehyde content. The effects of silicon on drought and concurrently UV-B stressed plants has not yet been studied in detail, but initial studies show some stress mitigation by silicon.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Zhu ◽  
Xiang Sun ◽  
Qi-Yong Tang ◽  
Zhi-Dong Zhang

Endophytes are essential components of plant microbiota. Studies have shown that environmental factors and seasonal alternation can change the microbial community composition of plants. However, most studies have mainly emphasized the transitive endophyte communities and seasonal alternation but paid less attention to their persistence through multiple seasons. Kalidium schrenkianum is a perennial halophyte growing in an arid habitat with radiation stress (137Cs) in northwest China. In this study, K. schrenkianum growing under different environmental stresses were selected to investigate the dynamics and persistency of endophytic microbial communities amid seasons in a year. The results showed that Gammaproteobacteria and unassigned Actinobacteria were the most dominant bacterial communities, while the most dominant fungal communities were Dothideomycetes, unassigned Fungi, and Sodariomycetes. The bacterial community diversity in roots was higher than that in aerial tissues, and root communities had higher diversity in summer and autumn. In contrast, the fungal community diversity was higher in aerial tissues comparing to roots, and the highest diversity was in spring. Season was a determinant factor in the microbial community composition in the roots but not in the aerial tissues. RaupCrick index suggested that the bacterial communities were mainly shaped by stochastic processes. Our research investigated the community traits and members with temporal persistency. For example, bacterial taxa Afipia, Delftia, Stenotrophomonas, Xanthomonadaceae_B_OTU_211, and fungal taxa Neocamarosporium F_OTU_388, F_OTU_404, F_OTU_445, and unassigned Fungi F_OTU_704, F_OTU_767 showed higher frequencies than predicted in all the four seasons tested with neutral community model. The networks of co-occurrence associations presented in two or more seasons were visualized which suggested potential time-continuous core modules in most communities. In addition, the community dynamics and persistency also showed different patterns by radiation levels. Our findings would enhance our understanding of the microbial community assembly under environmental stress, and be promising to improve the development of integrated concept of core microbiome in future.


2021 ◽  
Vol 22 (19) ◽  
pp. 10277
Author(s):  
Elizabeth Dufourcq-Sekatcheff ◽  
Stephan Cuiné ◽  
Yonghua Li-Beisson ◽  
Loïc Quevarec ◽  
Myriam Richaud ◽  
...  

Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h−1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.


2021 ◽  
Author(s):  
Tingfeng Wu ◽  
Boqiang Qin ◽  
Anning Huang ◽  
Yongwei Sheng ◽  
Shunxin Feng ◽  
...  

Abstract. Winds, wind waves, and turbulence are essential variables and playing critical role in regulating a series of physical and biogeochemical processes in large shallow lakes. However, parameterizing winds, waves, currents and turbulence and simulating the interaction between them in large shallow lakes haven’t been evaluated strictly because of a lack of field observations of lake hydrodynamics process. To address this problem, two process-based field observations were conducted to record the development of summer and winter wind-driven currents in Lake Taihu, a large shallow lake in China. Based on these observations and numerical experiments, a wave-current coupled model (WCCM) is developed by rebuilding expression of wind drag coefficient, introducing wave-induced radiation stress, and adopting a simple turbulence scheme, and then used to simulate wind-driven currents in Lake Taihu. The results show that, the WCCM can accurately simulate the upwelling process resulting from the wind-driven currents during the field observations. Comparing with other model, there is a 42.9 % increase of WCCM-simulated current speed which is mainly attributed to the new expression of wind drag coefficient. Meanwhile WCCM-simulated current direction and field are also improved due to the introduction of wave-induced radiation stress. Furthermore, the use of the simple turbulent scheme in the WCCM makes the simulation of the upwelling processes more efficient. The WCCM provides a sound basis for simulating shallow lake ecosystems.


2021 ◽  
Vol 9 (8) ◽  
pp. 791
Author(s):  
Duoc Tan Nguyen ◽  
Ad J. H. M. Reniers ◽  
Dano Roelvink

In numerical ocean models, the effect of waves on currents is usually expressed by either vortex-force or radiation stress representations. In this paper, the differences and similarities between those two representations are investigated in detail in conditions of both conservative and nonconservative waves. In addition, comparisons between different sets of equations of mean motion that apply different representations of wave-induced forcing terms are included. The comparisons are useful for selecting a suitable numerical ocean model to simulate the mean current in conditions of waves combined with currents.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1307
Author(s):  
Yamshi Arif ◽  
Priyanka Singh ◽  
Andrzej Bajguz ◽  
Shamsul Hayat

Phytocannabinoids are a structurally diverse class of bioactive naturally occurring compounds found in angiosperms, fungi, and liverworts and produced in several plant organs such as the flower and glandular trichrome of Cannabis sativa, the scales in Rhododendron, and oil bodies of liverworts such as Radula species; they show a diverse role in humans and plants. Moreover, phytocannabinoids are prenylated polyketides, i.e., terpenophenolics, which are derived from isoprenoid and fatty acid precursors. Additionally, targeted productions of active phytocannabinoids have beneficial properties via the genes involved and their expression in a heterologous host. Bioactive compounds show a remarkable non-hallucinogenic biological property that is determined by the variable nature of the side chain and prenyl group defined by the enzymes involved in their biosynthesis. Phytocannabinoids possess therapeutic, antibacterial, and antimicrobial properties; thus, they are used in treating several human diseases. This review gives the latest knowledge on their role in the amelioration of abiotic (heat, cold, and radiation) stress in plants. It also aims to provide synthetic and biotechnological approaches based on combinatorial biochemical and protein engineering to synthesize phytocannabinoids with enhanced properties.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3625
Author(s):  
Jon Hardwick ◽  
Ed B. L. Mackay ◽  
Ian G. C. Ashton ◽  
Helen C. M. Smith ◽  
Philipp R. Thies

Numerical modeling of currents and waves is used throughout the marine energy industry for resource assessment. This study compared the output of numerical flow simulations run both as a standalone model and as a two-way coupled wave–current simulation. A regional coupled flow-wave model was established covering the English Channel using the Delft D-Flow 2D model coupled with a SWAN spectral wave model. Outputs were analyzed at three tidal energy sites: Alderney Race, Big Roussel (Guernsey), and PTEC (Isle of Wight). The difference in the power in the tidal flow between coupled and standalone model runs was strongly correlated to the relative direction of the waves and currents. The net difference between the coupled and standalone runs was less than 2.5%. However, when wave and current directions were aligned, the mean flow power was increased by up to 7%, whereas, when the directions were opposed, the mean flow power was reduced by as much as 9.6%. The D-Flow Flexible Mesh model incorporates the effects of waves into the flow calculations in three areas: Stokes drift, forcing by radiation stress gradients, and enhancement of the bed shear stress. Each of these mechanisms is discussed. Forcing from radiation stress gradients is shown to be the dominant mechanism affecting the flow conditions at the sites considered, primarily caused by dissipation of wave energy due to white-capping. Wave action is an important consideration at tidal energy sites. Although the net impact on the flow power was found to be small for the present sites, the effect is site specific and may be significant at sites with large wave exposure or strong asymmetry in the flow conditions and should thus be considered for detailed resource and engineering assessments.


Chemosphere ◽  
2021 ◽  
Vol 272 ◽  
pp. 129645
Author(s):  
Yunfei Sun ◽  
Yitong Chen ◽  
Junjun Wei ◽  
Xingxing Zhang ◽  
Lu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document