scholarly journals Numerical simulation and experiment on steel fiber concrete beams

2019 ◽  
Vol 1425 ◽  
pp. 012007 ◽  
Author(s):  
Thanh Quang Khai Lam ◽  
Dung Do Thi My ◽  
Van Thuc Ngo ◽  
Trong Chuc Nguyen ◽  
Trong Phuoc Huynh
2015 ◽  
Vol 802 ◽  
pp. 196-201
Author(s):  
Ahmed Tareq Noaman ◽  
Badorul Hisham Abu Bakar ◽  
Hazizan Md. Akil

This paper presents the impact energy of steel fiber concrete beams at first crack and failure with different replacement ratios of crumb rubber. The test was carried out using simple low velocity drop weight test rig for both normal concrete (NC) and steel fiber concrete (SFC). The crumb rubber with particle size of 1 – 2 mm was added with replacement ratios of 5%, 15%, and 25% by volume of fine aggregate. Six batches consisting of 6 beams (100x100x500 mm) containing 0.5% of hooked end steel fibers were tested under impact load in accordance with ACI Committee 544. The specimens were tested at the age 90 days after curing in water. The results show a reduction in the compressive strength for both NC and SFC with the incorporation of crumb rubber with greater reduction at higher crumb rubber content. However, the measured impact energy for both NC and SFC was foundincreasing with the crumb rubber replacement.


2016 ◽  
Vol 10 (3) ◽  
pp. 297-306 ◽  
Author(s):  
Liang Lu ◽  
P. R. Tadepalli ◽  
Y. L. Mo ◽  
T. T. C. Hsu

1987 ◽  
Vol 113 (12) ◽  
pp. 2439-2458 ◽  
Author(s):  
Teck‐Yong Lim ◽  
P. Paramasivam ◽  
Seng‐Lip Lee

Author(s):  
T.Q.K. Lam ◽  
T.M.D. Do ◽  
V.T. Ngo ◽  
T.T.N. Nguyen ◽  
D.Q. Pham

Purpose: Determine the state of stress-strain, formation and development cracks, three-layer beam diagrams of load-compression stress, load-tension stress, load-vertical displacement relationships with a change in concrete grade. Design/methodology/approach: This paper presents the results of an ANSYS numerical simulation analysis involving stress-strain state and cracking of the steel fiber concrete layers of three-layer reinforced concrete beams with the upper and lower layers. With a cross-section of 150x300 mm, a total span of 2200 mm and an effective length of 2000 mm, the middle is a normal concrete layer. Under two-point loads, all the beam samples were tested. The research simulated three-layer concrete beams in different layers of beams with a change in concrete grade, and compared with and without the use of steel fibers in layers of concrete beams, including the nonlinearity of the material considered. Findings: A diagram of the formation and development of cracks in three-layer concrete beams has been constructed by the study results, determining the load at which the concrete beams begin to crack, the load at which the concrete beams are damaged. In the middle of three-layer steel fiber reinforced concrete beams, load-compression stress, loadtension stress, load-vertical displacement relationships are established. Study results show that these three-layer concrete beams appear to crack earlier than in other cases in cases 2 and 3, but the beam bearing capacity is damaged at 67 kN, the earliest in case 3. And case 6 at 116 kN is the latest. The effects of case 1 and case 3 are small compared with and without the use of steel fibers in cases, while the effects of case 5 and case 6 are very high. Research limitations/implications: The research focuses only on the change of concrete grade in the layers, but the input parameters affecting three-layer steel fiber concrete beams have not been researched, such as the number of tensile steel bars, tensile steel bar diameter, steel fiber content in concrete, thickness variation in three-layer concrete beam layers, etc. Practical implications: Provides a result of experimental study and ANSYS numerical simulation in multi-layer steel fiber concrete beams. Originality/value: The analysis of multi-layered steel fiber concrete beams using experimental and simulation methods shows that other parameters influencing the beams will continue to analysis the working stages of three-layer beams.


Sign in / Sign up

Export Citation Format

Share Document