International Journal of Concrete Structures and Materials
Latest Publications


TOTAL DOCUMENTS

597
(FIVE YEARS 178)

H-INDEX

27
(FIVE YEARS 6)

Published By Springer-Verlag

2234-1315, 1976-0485

Author(s):  
Tae-Hoon Kim

AbstractThis paper presents a nonlinear analysis procedure for the seismic performance assessment of deteriorated reinforced concrete bridges using a modified damage index. A finite-element analysis program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze deteriorated two-span simply supported reinforced concrete bridges. The new nonlinear material models for deteriorated reinforced concrete behaviors were proposed, considering corrosion effects as shown in a reduction in reinforcement section and bond strength. A modified damage index aims to quantify the seismic performance level in deteriorated reinforced concrete bridges. Several parameters of two-span simply supported deteriorated reinforced concrete bridge have been studied to determine the seismic performance levels. The newly developed analytical method for assessing the seismic performance of deteriorated reinforced concrete bridges is verified by comparison with the experimental and analytical parameter results.


Author(s):  
Yingguang Fang ◽  
Yafei Xu ◽  
Renguo Gu

AbstractRecent years have witnessed that the prefabricated concrete structure is in the widespread use of building structures. This structure, however, still has some weaknesses, such as excessive weight of components, high requirements for construction equipment, difficult alignment of nodes, and poor installation accuracy. In order to handle the problems mentioned above, the prefabricated component made of lightweight concrete is adopted. At the same time, this prefabricated component is beneficial to reducing the load of the building structure itself and improving the safety and economy of the building structure. Nevertheless, it is rarely found that the researches and applications of lightweight concrete for stressed members are conducted. In this context, this paper replaces ordinary coarse aggregate with lightweight ceramsite or foam based on the C60 concrete mix ratio so as to obtain a mix ratio of C40 lightweight concrete that meets the engineering standards. Besides, ceramsite concrete beams and foamed concrete beams are fabricated. Moreover, through three-point bending tests, this paper further explores the mechanical properties of lightweight concrete beams and plain concrete beams during normal use conditions. As demonstrated in the results, the mechanical properties of the foamed concrete beam are similar to those of the plain concrete beam. Compared to plain concrete beams, the density of foamed concrete beams was lower by 23.4%; moreover, the ductility and toughness of foamed concrete were higher by 13% and 3%, respectively. However, in comparison with the plain concrete beam, the mechanical properties of the ceramsite concrete beam have some differences, with relatively large dispersion and obvious brittle failure characteristics. Moreover, in consideration of the nonlinear deformation characteristics of reinforced concrete beams, the theoretical calculation value of beam deflection was given in this paper based on the assumption of flat section and the principle of virtual work. The theoretically calculated deflection values of ordinary concrete beams and foamed concrete beams are in good agreement with the experimental values under normal use conditions, verifying the rationality and effectiveness of the calculation method. The research results of this paper can be taken as a reference for similar engineering designs.


Author(s):  
Ninghui Liang ◽  
Xiufei You ◽  
Ru Yan ◽  
Qingxu Miao ◽  
Xinrong Liu

AbstractTo explore the effect of multi-scale polypropylene fiber (PPF) hybridization on the mechanical properties of roller-compacted concrete (RCC), the early-age (3, 7, 14, 28 days) compressive strength, splitting tensile strength and uniaxial tensile test of RCC reinforced with micro-, macro- and hybrid polypropylene fibers were investigated. Then, the tensile stress–strain curve of polypropylene fiber-reinforced roller-compacted concrete (PFRCC) and the corresponding tensile parameters were obtained. The uniaxial tensile constitutive equation of PFRCC and fiber hybrid effect function was also proposed. Finally, the enhancement mechanism of fiber hybridization on mechanical properties of RCC was analyzed. The results indicated that the strength and toughness of PFRCC improved with the incorporation of PPF, showing obvious plastic failure characteristics of PFRCC. Before curing the concrete for 7 days, micro-PPF played a major role in strengthening RCC, while macro-PPF played a major role in reinforcing concrete after that. Moreover, the tensile strength and toughness indexes of multi-scale PFRCC performed the best, indicating the positive hybridization of three types of PPF. The proposed PFRCC uniaxial tensile constitutive equation and fiber hybrid effect function based on existing researches were also well matched with the experimental results.


Author(s):  
Sang-Hyun Kim ◽  
Sung Yong Park ◽  
Sung Tae Kim ◽  
Se-Jin Jeon

AbstractThe proper estimation of prestressing force (PF) distribution is critical to ensure the safety and serviceability of prestressed concrete (PSC) structures. Although the PF distribution can be theoretically calculated based on certain predictive equations, the resulting accuracy of the theoretical PF needs to be further validated by comparison with reliable test data. Therefore, a Smart Strand with fiber optic sensors embedded in a core wire was developed and applied to a full-scale specimen and two long-span PSC girder bridges in this study. The variation in PF distribution during tensioning and anchoring was measured using the Smart Strand and was analyzed by comparison with the theoretical distribution calculated using the predictive equations for short-term prestress losses. In particular, the provisions for anchorage seating loss and elastic shortening loss were reviewed and possible improvements were proposed. A new method to estimate the amount of anchorage slip based on real PF distributions revealed that the general assumption of 3–6-mm slip falls within a reasonable range. Finally, the sensitivity of the PF distribution to a few of the variables included in the equation of the elastic shortening loss was examined. The study results confirmed that the developed Smart Strand can be used to improve the design parameters or equations in PSC structures by overcoming the drawbacks of conventional sensing technologies.


Author(s):  
Jialiang Liu ◽  
Yu Jin ◽  
Yujie Zhu ◽  
Jinyang Li ◽  
Xuguang Zhang ◽  
...  

AbstractHigh-pressure water jet crushing concrete has significant advantages in safety, quality and environmental protection, which has a broad application prospect in the maintenance and reconstruction of concrete building. Nevertheless, it still has some problems such as high threshold pump pressure and large specific energy consumption. Water jet breaking concrete with liquid nitrogen (LN2) cold shock assistance combined with the low-temperature-induced fracturing and hydraulic impact can effectively reduce the working pressure of water jet and improve the energy utilization rate. On account of the unclear cracking characteristics and mechanism of concrete under the LN2 cold shock, this research carried out the following systematic research focusing on the key scientific issues above based on mechanical tests, scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR). Results indicate that the total mass of concrete exfoliated blocks after compression failure increases as the LN2 cold shock time and the number of shock cycles goes up, and the uniaxial compressive strength decreases from 8.27 to 21.96%. Through SEM and NMR analysis, it is found that LN2 cold shock can cause more micro-cracks to develop inside the concrete, and the pore development increases as the cold shock time and the cycle number increase. Additionally, under the condition of water jet pump pressure of 150 MPa, the maximum width and depth of crater for cold shock of 5 min increase by 41.79% and 20.48%, respectively, and those for cold shock of 10 min increase by 76.72% and 40.43%, respectively, compared with the original sample.


Author(s):  
Mien Van Tran ◽  
Vinh Ngoc Chau

AbstractThe experimental program investigated concrete with a large amount of fly ash (FA) with silica fume (SF) to replace Portland cement on the results of semi-adiabatic test, compressive strength test, and the rapid chloride permeability test (RCPT). The replacement ratios of cement by a combination of FA and SF were 30%, 35%, and 40% by mass. The percentages of SF to replace cement were 0%, 4%, and 8% by mass. Three different water-to-binder ratios (W/B) of 0.34, 0.36, and 0.38 were also investigated. Multiple linear regression was applied to construct the predicted equations (models) for the semi-adiabatic temperature rise test and the compressive strength test. Models were assessed statistically and were used to solve the concrete mixture design optimization problems. The mixture with W/B of 0.36, 31% FA, and 5% SF was found to optimally satisfy the multi-objective problem: 28-day compressive strength of 50 MPa, low heat of hydration, and very low chloride penetrability classification. Field test on the actual wind turbine foundation of the optimal mixture revealed the maximum temperature rise was 74.8 °C and the maximum temperature differential was 21.9 °C.


Author(s):  
Xin Yang ◽  
Ninghui Liang ◽  
Yang Hu ◽  
Rui Feng

AbstractTo study the influence of polypropylene fibers with different thicknesses on concrete beams, inclined section shear tests of polypropylene fiber concrete beams were carried out. The cracking load, ultimate load, midspan deflection, reinforcement, and strain of polypropylene fiber concrete beams and conventional reinforced-concrete beams under shear were compared and analyzed. The load-bearing capacity of the rectangular beams was improved significantly by polypropylene fiber addition. Compared with conventional reinforced-concrete beams, the limit shear load of concrete beams with polypropylene fibers and multisize polypropylene concrete beams that were reinforced with three types of fibers increased by 8.67% and 17.07%, respectively. By mixing polypropylene fibers into concrete beams, the initial crack shear force of the beam was improved, the number of cracks was increased and the crack width was reduced, which can increase the beam ductility, inhibit crack formation and increase the strength. The computational formula of the shear ultimate bearing capacity of polypropylene fiber–concrete beams was revised according to composite material theory, and the calculated results were consistent with the test values.


Author(s):  
Linyun Zhou

AbstractOver the past decades, considerable efforts have been made to quantify the bursting forces in the post-tensioned anchorage zones based on the simplified model or fitting formulas, however reproducing the transverse stress distribution is still a challenging topic, which is also important to detail the reinforcing details in the anchorage zones, especially for cracking control. To address this issue, this paper is devoted to seeking an elasticity solution for transverse stresses in the anchorage zones, and providing a more rational equation for transverse distribution in anchorage zones. The sum function of normal stresses is employed to solve the stresses filed in the anchorage zones with concentric load and two eccentric loads. The bursting stresses in the concentric anchorage zones and spalling stresses in the eccentric anchorage zones are verified by the photoelastic tests. The transverse stresses along the symmetry axis of the eccentric anchorage zones can be handled as a concentric single anchorage zone with equivalent bearing plate width. Moreover, according to the concept of force stream tube, the profiles of isostatic line of compression (ILCs) are determined and validated, which confirms the existence of ILCs.


Author(s):  
Kourosh Shirani ◽  
Mohammad Reisi ◽  
Mohammad Safari Savadkoohi

AbstractBesides preventing valuable natural resources from going to waste, using stone waste from stone processing plants in concrete helps reduce environmental pollution and, therefore, offers a convenient route to sustainable development. The present study aims to use granite waste (GW) in high-strength refractory concrete. Sixteen high-strength refractory concrete mixes, including two water-to-binder ratios (W/B = 0.17 and 0.2), two silica-fume-to-binder ratios (SF/B = 0.15 and 0.2), two binder contents (B = 1200 and 1400 kg/m3), and two replacement ratios of silica sand by granite waste (GW/Agg = 0 and 50%) were designed and prepared with high-alumina cement (HAC). The concrete specimens were exposed to 1200 °C. Compressive and flexural strength and scanning electron microscopy (SEM) tests were performed on specimens of concrete mixes before and after heating. It was found that in specimens with high binder content (1400 kg/m3), replacing 50% silica sand with GW (GW/Agg = 50%) in refractory concrete improves compressive and flexural strengths by 3–15 and 4–24% before heating, respectively. It was also shown that using GW to replace silica aggregates in concrete specimens with a 1200 kg/m3 binder content not only did not undermine, but also improved the compressive and flexural strengths of refractory concrete after heating by 20–78% and 15–60%, respectively, as a result of sintering. Meanwhile, in the case of the concrete with 1400 kg/m3 binder content, adding GW exacerbated its loss of compressive and flexural strengths after heating due to little or lack of sintering.


Author(s):  
Mehrdad Abdi Moghadam ◽  
Ramezan Ali Izadifard

AbstractThe tensile strength of concrete has a great impact on the performance of concrete structures, especially for members exposed to high temperatures. The inclusion of steel fibers in concrete is one of the measures to retrieve the loss of tensile strength. The previous equations for the prediction of the tensile strength, are valid for conventional concrete and can predict the tensile strength after high-temperature exposure. Therefore, they are unsatisfactory for forecasting the tensile strength of plain and steel fiber reinforced concrete under high-temperature exposure. To establish a model that can effectively simulate the tensile strength of plain concrete, specimens with compressive strengths of 20–80 MPa are tested. Then by performing tensile strength tests on the specimens containing various content of steel fiber, an equation for prediction of the tensile strength at the ambient temperature is proposed. Meanwhile, the tensile strength tests are conducted at temperatures of 100–800 °C to develop a model for high-temperature exposure. The results indicate that an increase of compressive strength from 20 to 84 improves the tensile strength by 169.4%, and the incorporation of 0.25 and 0.5% of steel fibers can improve the tensile strength of normal concrete by 58.48 and 80.29% on average at the tested temperatures, respectively. Moreover, the proposed model is able to predict the tensile strength of normal and steel fiber reinforced concrete exposed to high temperatures accurately. This equation would help a wider application of the steel fibers in the construction industry with the risk of a fire accident.


Sign in / Sign up

Export Citation Format

Share Document