scholarly journals A Non-local Rank-Constraint Hyperspectral Images Denoising Method with 3-D Anisotropic Total Variation

2020 ◽  
Vol 1438 ◽  
pp. 012024
Author(s):  
Tao Gong ◽  
Desheng Wen ◽  
Tianbin He
2020 ◽  
Vol 13 (4) ◽  
pp. 14-31
Author(s):  
Nikita Joshi ◽  
Sarika Jain ◽  
Amit Agarwal

Magnetic resonance (MR) images suffer from noise introduced by various sources. Due to this noise, diagnosis remains inaccurate. Thus, removal of noise becomes a very important task when dealing with MR images. In this paper, a denoising method has been discussed that makes use of non-local means filter and discrete total variation method. The proposed approach has been compared with other noise removal techniques like non-local means filter, anisotropic diffusion, total variation, and discrete total variation method, and it proves to be effective in reducing noise. The performance of various denoising methods is compared on basis of metrics such as peak signal-to-noise ratio (PSNR), mean square error (MSE), universal image quality index (UQI), and structure similarity index (SSIM) values. This method has been tested for various noise levels, and it outperformed other existing noise removal techniques, without blurring the image.


Author(s):  
Wenzhi Liao ◽  
Jan Aelterman ◽  
Hiep Quang Luong ◽  
Aleksandra Pizurica ◽  
Wilfried Philips

2016 ◽  
Vol 24 (3) ◽  
pp. 477-487
Author(s):  
Yiping Chen ◽  
Cheng Wang ◽  
Liansheng Wang

2021 ◽  
Author(s):  
Rupsa Chakraborty ◽  
Gabor Kereszturi ◽  
Reddy Pullanagari ◽  
Patricia Durance ◽  
Salman Ashraf ◽  
...  

<p>Geochemical mineral prospecting approaches are mostly point-based surveys which then rely on statistical spatial extrapolation methods to cover larger areas of interest. This leads to a trade-off between increasing sampling density and associated attributes (e.g., elemental distribution). Airborne hyperspectral data is typically high-resolution data, whilst being spatially continuous, and spectrally contiguous, providing a versatile baseline to complement ground-based prospecting approaches and monitoring. In this study, we benchmark various shallow and deep feature extraction algorithms, on airborne hyperspectral data at three different spatial resolutions, 0.8 m, 2 m and 3 m. Spatial resolution is a key factor to detailed scale-dependent mineral prospecting and geological mapping. Airborne hyperspectral data has potential to advance our understanding for delineating new mineral deposits. This approach can be further extended to large areas using forthcoming spaceborne hyperspectral platforms, where procuring finer spatial resolution data is highly challenging. The study area is located along the Rise and Shine Shear Zone (RSSZ) within the Otago schist, in the South Island (New Zealand). The RSSZ contains gold and associated hydrothermal sulphides and carbonate minerals that are disseminated through sheared upper green schist facies rocks on the 10-metre scale, as well as localized (metre-scale) quartz-rich zones. Soil and rock samples from 63 locations were collected, scattered around known mineralised and unmineralized zones, providing ground truth data for benchmarking. The separability between the mineralized and the non-mineralised samples through laboratory based spectral datasets was analysed by applying Partial least squares discriminant analysis (PLS-DA) on the XRF spectra and laboratory based hyperspectral data separately. The preliminary results indicate that even in partially vegetated zones mineralised regions can be mapped out relatively accurately from airborne hyperspectral images using orthogonal total variation component analysis (OTVCA). This focuses on feature extraction by optimising a cost function that best fits the hyperspectral data in a lower dimensional feature space while monitoring the spatial smoothness of the features by applying total variation regularization.</p>


Sign in / Sign up

Export Citation Format

Share Document