elemental distribution
Recently Published Documents


TOTAL DOCUMENTS

658
(FIVE YEARS 207)

H-INDEX

33
(FIVE YEARS 6)

Author(s):  
Judy Z Wu ◽  
Victor Ogunjimi ◽  
Mary Ann Sebastian ◽  
Di Zhang ◽  
Jie Jian ◽  
...  

Abstract One-dimensional c-axis-aligned BaZrO3 (BZO) nanorods are regarded as strong one-dimensional artificial pinning centers (1D-APCs) in BZO-doped YaBa2Cu3O7-x (BZO/YBCO) nanocomposite films. However, a microstructure analysis has revealed a defective, oxygen-deficient YBCO column around the BZO 1D-APCs due to the large lattice mismatch of ~7.7% between the BZO (3a=1.26 nm) and YBCO (c=1.17 nm), which has been blamed for the reduced pinning efficiency of BZO 1D-APCs. Herein, we report a dynamic lattice enlargement approach on the tensile strained YBCO lattice during the BZO 1D-APCs growth to induce c-axis elongation of the YBCO lattice up to 1.26 nm near the BZO 1D-APC/YBCO interface via Ca/Cu substitution on single Cu-O planes of YBCO, which prevents the interfacial defect formation by reducing the BZO/YBCO lattice mismatch to ~1.4%. Specifically, this is achieved by inserting thin Ca0.3Y0.7Ba2Cu3O7-x (CaY-123) spacers as the Ca reservoir in 2-6 vol.% BZO/YBCO nanocomposite multilayer (ML) films. A defect-free, coherent BZO 1D-APC/YBCO interface is confirmed in transmission electron microscopy and elemental distribution analyses. Excitingly, up to five-fold enhancement of Jc (B) at magnetic field B=9.0 T//c-axis and 65-77 K was obtained in the ML samples as compared to their BZO/YBCO single-layer (SL) counterpart’s. This has led to a record high pinning force density Fp together with significantly enhanced Bmax at which Fp reaches its maximum value Fp,max for BZO 1D-APCs at B//c-axis. At 65 K, the Fp,max ~158 GN/m3 and Bmax ~ 8.0 T for the 6% BZO/YBCO ML samples represent a significant enhancement over Fp,max ~36.1 GN/m3 and Bmax ~ 5.0 T for the 6% BZO/YBCO SL counterparts. This result not only illustrates the critical importance of a coherent BZO 1D-APC/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO 1D-APCs.


Author(s):  
Zsolt Salyi ◽  
George Kaptay ◽  
Daniel Koncz-Horvath ◽  
Laszlo Somlyai-Sipos ◽  
Peter Zoltan Kovacs ◽  
...  

AbstractThe goal of this research is to study the applicability of the diffusion boriding process as a high-temperature thermochemical heat treatment to enhance the lifetime of steel selective soldering tools. The main purpose of the work is to discuss the behavior of double-phase (FeB/Fe2B) iron-boride coating on the surface of different steels (DC04, C45, CK60, and C105U) against the stationary SAC309 lead-free solder liquid alloy. The boride coating was formed on the surface of the steel samples through the powder pack boriding technique. The microstructure of the formed layer was examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The borided samples were first cut in half and then immersed into a stationary SAC309 lead-free solder liquid alloy (Sn–3Ag–0.9Cu) for 40 days. Microstructure examinations were performed by SEM with energy-dispersive spectroscopy and an elemental distribution map after the dissolution test. Excessive dissolution/corrosion of the original steel surface was observed at the steel/SAC interfaces, leading also to the formation of Fe–Sn intermetallic phases. This was found to be the major reason for the failure of selective soldering tools made of steel. On the contrary, no dissolution and no intermetallic compounds were observed at the FeB/SAC and at the Fe2B/SAC interfaces; as a result, the thicknesses of the FeB and Fe2B phases remained the same during the 40-day dissolution tests. Thus, it was concluded that both FeB and Fe2B phases show excellent resistance against the aggressive liquid solder alloy. The results of the dissolution tests show a good agreement with the thermodynamic calculations.


2022 ◽  
Vol 23 (2) ◽  
pp. 703
Author(s):  
Karolina Planeta ◽  
Zuzanna Setkowicz ◽  
Mateusz Czyzycki ◽  
Natalia Janik-Olchawa ◽  
Damian Ryszawy ◽  
...  

Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal’s brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat’s brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.


2022 ◽  
Author(s):  
Wujie Ge ◽  
Yuanxiang Fu ◽  
Xianguo Ma ◽  
Xiang Li ◽  
Gongchang Peng

MgHPO4 has been introduced as a reactant that interacts with LiNi0.6Co0.2Mn0.2O2 (NCM622) to achieve the dual modification of Mg2+ gradient doping and Li3PO4 surface coating. The structure, morphology, elemental distribution,...


2022 ◽  
Vol 29 (1) ◽  
pp. 78-87
Author(s):  
Yu. G. Chabak ◽  
K. Shimizu ◽  
V. G. Efremenko ◽  
M. A. Golinskyi ◽  
K. Kusumoto ◽  
...  

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
Yupeng Xie ◽  
Ailian Zhu ◽  
Min Chen ◽  
Bing Dai ◽  
Bin Wang ◽  
...  

In this work, coal fly ash, hereinafter CFA is proposed to work as raw material for immobilization of Sr-contaminated soil by microwave sintering in the path towards resource utilization of solid waste. The immobilization mechanism and performance was systemically investigated through phase evolution, microstructure, elemental distribution, and physical properties. The results shown that the Sr could be incorporated into feldspar strontian (SrAl2Si2O8) at 1300 °C for 30 min. Moreover, the maximum solid solubility of SrSO4 was more than 30 wt.%. The Sr was homogeneously distributed in the sintered matrices without substantial enrichment. The sintered matrix exhibited high density (2.53 g/cm3). Thus, microwave heating coupled with CFA could provide a new method for immobilization of Sr-contaminated soil in case of the spent nuclear reprocessing cycle in nuclear power plants or a nuclear accident emergency.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 124
Author(s):  
Geórgia Labuto ◽  
Sandra Sanches ◽  
João G. Crespo ◽  
Vanessa J. Pereira ◽  
Rosa M. Huertas

The combination of photocatalysis and membrane filtration in a single reactor has been proposed, since the photocatalytic treatment may degrade the pollutants retained by the membrane and reduce fouling. However, polymeric membranes can be susceptible to degradation by UV radiation and free radicals. In the present study, five commercial polymeric membranes were exposed to ultraviolet (UV) radiation before and after applying a sol–gel coating with TiO2 nanoparticles. Membrane stability was characterized by changes in hydrophilicity as well as analysis of soluble substances and nanoparticles detached into the aqueous medium, and by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometry (EDS) for structural, morphological, and elemental distribution analysis, respectively. The TiO2 coating conferred photocatalytic properties to the membranes and protected them during 6 h of UV radiation exposures, reducing or eliminating chemical and morphological changes, and in some cases, improving their mechanical resistance. A selected commercial nanofiltration membrane was coated with TiO2 and used in a hybrid reactor with a low-pressure UV lamp, promoting photocatalysis coupled with cross-flow filtration in order to remove 17α-ethinylestradiol spiked into an aqueous matrix, achieving an efficiency close to 100% after 180 min of combined filtration and photocatalysis, and almost 80% after 90 min.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Mehri Hashemzadeh ◽  
Keyvan Raeissi ◽  
Fakhreddin Ashrafizadeh ◽  
Amin Hakimizad ◽  
Monica Santamaria ◽  
...  

This work evaluates the effect of sodium meta-silicate pentahydrate (SMS) and potassium hydroxide concentrations on properties of Al2O3-TiO2 coatings produced through plasma electrolytic oxidation in a solution containing 3 g L−1 potassium titanyl oxalate, (PTO), using a unipolar waveform with constant current density. The surface and cross-section characteristics of PEO coatings including morphology, elemental distribution, and phase composition were evaluated using FESEM, EDS, and XRD techniques. Voltage-time response indicated the concentration of SMS and KOH had a significant effect on the duration of each stage of the PEO process. More cracks and pores were formed at the higher concentrated solutions that resulted in the incorporation of solution components especially Si into the coating inner parts. Ti is distributed throughout the coatings, but it had a dominant distribution in the Si-rich areas. The coating prepared in the electrolyte containing no silicate consisted of non-stoichiometric γ-Al2O3 and/or amorphous Al2O3 phase. Adding silicate into the coating electrolyte resulted in the appearance of α-Al2O3 besides the dominant phase of γ-Al2O3. The corrosion behaviour of the coatings was investigated using the EIS technique. It was found that the coating prepared in the presence of 3 g L−1 SMS and 2 g L−1 KOH, possessed the highest barrier resistance (~10 MΩ cm2), owing to a more compact outer layer, thicker inner layer along with appropriate dielectric property because this layer lacks the Si element. It was discovered that the incorporation of Ti4+ and especially Si4+ in the coating makes the dielectric loss in the coating.


Sign in / Sign up

Export Citation Format

Share Document