scholarly journals Study on Pollutant Emission in a Natural Draft Dry Cooling tower with Flue Gas Injection based on LES

2020 ◽  
Vol 1600 ◽  
pp. 012011
Author(s):  
Ying Zhou ◽  
Haihong Xu ◽  
Zhen Xu ◽  
Li Ding
2021 ◽  
Vol 188 ◽  
pp. 116628 ◽  
Author(s):  
Yuchen Dai ◽  
Yuanshen Lu ◽  
Alexander Y. Klimenko ◽  
Ying Wang ◽  
Kamel Hooman

2017 ◽  
Vol 112 ◽  
pp. 326-339 ◽  
Author(s):  
Huan Ma ◽  
Fengqi Si ◽  
Yu Kong ◽  
Kangping Zhu ◽  
Wensheng Yan

2018 ◽  
Vol 137 ◽  
pp. 93-100 ◽  
Author(s):  
Weiliang Wang ◽  
Hai Zhang ◽  
Junfu Lyu ◽  
Qing Liu ◽  
Guangxi Yue ◽  
...  

2018 ◽  
Vol 131 ◽  
pp. 1-7 ◽  
Author(s):  
Weiliang Wang ◽  
Yuzhao Wang ◽  
Hai Zhang ◽  
Guanming Lin ◽  
Junfu Lu ◽  
...  

Author(s):  
A. Montakhab

Because of its relatively high coolant temperature, the closed cycle gas turbine HTGR is well adapted to dry cooling and its waste heat can be rejected with relatively low cost. The preliminary design of natural-draft dry cooling towers for a 1200 MW(e) GT-HTGR is presented. The effects of air approach velocity, capacity rates of air and water mediums, and number of heat exchanger cross flow passes on salient tower and heat exchanger dimensions are studied. Optimum tower designs are achieved with three cross flow passes for the heat exchanger, resulting in a simultaneous minimization of tower height, heat exchanger surface area and circulating water pumping power. Four alternative tower designs are considered and their relative merits are compared. It is concluded that the 1200 MW(e) plant can be cooled by a single tower design which is well within the present state of the natural-draft dry cooling tower technology. In comparison, the fossil-fired or HTGR steam plants of the same output is shown to need three such towers.


Sign in / Sign up

Export Citation Format

Share Document