scholarly journals Household Electricity Load Forecasting Based on Pearson Correlation Coefficient Clustering and Convolutional Neural Network

2020 ◽  
Vol 1601 ◽  
pp. 022012
Author(s):  
Minghao Xie ◽  
Chengwei Chai ◽  
Heng Guo ◽  
Minghao Wang
Forecasting ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 804-838
Author(s):  
Manogaran Madhiarasan ◽  
Mohamed Louzazni

With an uninterrupted power supply to the consumer, it is obligatory to balance the electricity generated by the electricity load. The effective planning of economic dispatch, reserve requirements, and quality power provision for accurate consumer information concerning the electricity load is needed. The burden on the power system engineers eased electricity load forecasting is essential to ensure the enhanced power system operation and planning for reliable power provision. Fickle nature, atmospheric parameters influence makes electricity load forecasting a very complex and challenging task. This paper proposed a multilayer perceptron neural network (MLPNN) with an association of recursive fine-tuning strategy-based different forecasting horizons model for electricity load forecasting. We consider the atmospheric parameters as the inputs to the proposed model, overcoming the atmospheric effect on electricity load forecasting. Hidden layers and hidden neurons based on performance investigation performed. Analyzed performance of the proposed model with other existing models; the comparative performance investigation reveals that the proposed forecasting model performs rigorous with a minimal evaluation index (mean square error (MSE) of 1.1506 × 10-05 for Dataset 1 and MSE of 4.0142 × 10-07 for Dataset 2 concern to the single hidden layer and MSE of 2.9962 × 10-07 for Dataset 1, and MSE of 1.0425 × 10-08 for Dataset 2 concern to two hidden layers based proposed model) and compared to the considered existing models. The proposed neural network possesses a good forecasting ability because we develop based on various atmospheric parameters as the input variables, which overcomes the variance. It has a generic performance capability for electricity load forecasting. The proposed model is robust and more reliable.


2020 ◽  
Vol 10 (2) ◽  
pp. 200-205
Author(s):  
Isaac Adekunle Samuel ◽  
Segun Ekundayo ◽  
Ayokunle Awelewa ◽  
Tobiloba Emmanuel Somefun ◽  
Adeyinka Adewale

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4408
Author(s):  
Chun-Yao Lee ◽  
Chang-En Wu

This paper presents four refined distance models to the application of forecasting short-term electricity price namely Euclidean norm, Manhattan distance, cosine coefficient, and Pearson correlation coefficient. The four refined models were constructed and used to select the days, which are like a reference day in electricity prices and loads, called similar days in this study. Using the similar days, the electricity prices of a forecast day were further obtained by similar day regression (SDR) and similar day based artificial neural network (SDANN). The simulation results of the case of the PJM (Pennsylvania, New Jersey and Maryland) interchange energy market indicate the superiority and availability of the selection 45 framework days and three similar days based on Pearson correlation coefficient model.


Sign in / Sign up

Export Citation Format

Share Document