scholarly journals An interpretation of a simple portal dark matter model on Fermi-LAT gamma-ray excess

2021 ◽  
Vol 1719 (1) ◽  
pp. 012041
Author(s):  
Tanech Klangburam ◽  
Chakrit Pongkitivanichkul
2016 ◽  
Vol 2016 (03) ◽  
pp. 048-048 ◽  
Author(s):  
Shunsaku Horiuchi ◽  
Oscar Macias ◽  
Diego Restrepo ◽  
Andrés Rivera ◽  
Oscar Zapata ◽  
...  

Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 92
Author(s):  
Man Chan

Recently, many studies indicate that the GeV gamma ray excess signal from the central Milky Way can be best explained by ∼40–50 GeV dark matter annihilating via the b b ¯ channel. However, this model appears to be disfavored by the recent Fermi-LAT data for dwarf spheroidal galaxies and the constraint from synchrotron radiation. In this article, we describe a consistent picture to relieve the tensions between the dark matter annihilation model and the observations. We show that a baryonic feedback process is the key to alleviate the tensions and the ∼40–50 GeV dark matter model is still the best one to account for the GeV gamma ray excess in the Milky Way.


2016 ◽  
Vol 2016 (6) ◽  
Author(s):  
Michael Duerr ◽  
Pavel Fileviez Pérez ◽  
Juri Smirnov

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Tanushree Basak ◽  
Baradhwaj Coleppa ◽  
Kousik Loho

Abstract We revisit the two real singlet extension of the Standard Model with a $$ {Z}_2\times {Z}_2^{\prime } $$ Z 2 × Z 2 ′ symmetry. One of the singlet scalars S2, by virtue of an unbroken $$ {Z}_2^{\prime } $$ Z 2 ′ symmetry, plays the role of a stable dark matter candidate. The other scalar S1, with spontaneously broken Z2-symmetry, mixes with the SM Higgs boson and acts as the scalar mediator. We analyze the model by putting in the entire set of theoretical and recent experimental constraints. The latest bounds from direct detection Xenon1T experiment severely restricts the allowed region of parameter space of couplings. To ensure the dark matter satisfies the relic abundance criterion, we rely on the Breit-Wigner enhanced annihilation cross-section. Further, we study the viability of explaining the observed gamma-ray excess in the galactic center in this model with a dark matter of mass in the ∼ 36 − 51 GeV window and present our conclusions.


2017 ◽  
Vol 773 ◽  
pp. 448-454 ◽  
Author(s):  
Qian-Fei Xiang ◽  
Xiao-Jun Bi ◽  
Su-Jie Lin ◽  
Peng-Fei Yin

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zexi Hu ◽  
Chengfeng Cai ◽  
Yi-Lei Tang ◽  
Zhao-Huan Yu ◽  
Hong-Hao Zhang

Abstract We propose a vector dark matter model with an exotic dark SU(2) gauge group. Two Higgs triplets are introduced to spontaneously break the symmetry. All of the dark gauge bosons become massive, and the lightest one is a viable vector DM candidate. Its stability is guaranteed by a remaining Z2 symmetry. We study the parameter space constrained by the Higgs measurement data, the dark matter relic density, and direct and indirect detection experiments. We find numerous parameter points satisfying all the constraints, and they could be further tested in future experiments. Similar methodology can be used to construct vector dark matter models from an arbitrary SO(N) gauge group.


Author(s):  
Jiajun Zhang ◽  
Hantao Liu ◽  
Ming-Chung Chu

Sign in / Sign up

Export Citation Format

Share Document