direct and indirect detection
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7566
Author(s):  
Kaitlin M. Anagnost ◽  
Eldred Lee ◽  
Zhehui Wang ◽  
Jifeng Liu ◽  
Eric R. Fossum

Simulation results are presented that explore an innovative, new design for X-ray detection in the 20–50 keV range that is an alternative to traditional direct and indirect detection methods. Typical indirect detection using a scintillator must trade-off between absorption efficiency and spatial resolution. With a high-Z layer that down-converts incident photons on top of a silicon detector, this design has increased absorption efficiency without sacrificing spatial resolution. Simulation results elucidate the relationship between the thickness of each layer and the number of photoelectrons generated. Further, the physics behind the production of electron-hole pairs in the silicon layer is studied via a second model to shed more light on the detector’s functionality. Together, the two models provide a greater understanding of this detector and reveal the potential of this novel form of X-ray detection.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Peter Athron ◽  
Neal Avis Kozar ◽  
Csaba Balázs ◽  
Ankit Beniwal ◽  
Sanjay Bloor ◽  
...  

AbstractWe assess the status of a wide class of WIMP dark matter (DM) models in light of the latest experimental results using the global fitting framework . We perform a global analysis of effective field theory (EFT) operators describing the interactions between a gauge-singlet Dirac fermion and the Standard Model quarks, the gluons and the photon. In this bottom-up approach, we simultaneously vary the coefficients of 14 such operators up to dimension 7, along with the DM mass, the scale of new physics and several nuisance parameters. Our likelihood functions include the latest data from Planck, direct and indirect detection experiments, and the LHC. For DM masses below 100 GeV, we find that it is impossible to satisfy all constraints simultaneously while maintaining EFT validity at LHC energies. For new physics scales around 1 TeV, our results are influenced by several small excesses in the LHC data and depend on the prescription that we adopt to ensure EFT validity. Furthermore, we find large regions of viable parameter space where the EFT is valid and the relic density can be reproduced, implying that WIMPs can still account for the DM of the universe while being consistent with the latest data.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zexi Hu ◽  
Chengfeng Cai ◽  
Yi-Lei Tang ◽  
Zhao-Huan Yu ◽  
Hong-Hao Zhang

Abstract We propose a vector dark matter model with an exotic dark SU(2) gauge group. Two Higgs triplets are introduced to spontaneously break the symmetry. All of the dark gauge bosons become massive, and the lightest one is a viable vector DM candidate. Its stability is guaranteed by a remaining Z2 symmetry. We study the parameter space constrained by the Higgs measurement data, the dark matter relic density, and direct and indirect detection experiments. We find numerous parameter points satisfying all the constraints, and they could be further tested in future experiments. Similar methodology can be used to construct vector dark matter models from an arbitrary SO(N) gauge group.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Alan S. Cornell ◽  
Aldo Deandrea ◽  
Thomas Flacke ◽  
Benjamin Fuks ◽  
Lara Mason

Abstract We investigate the phenomenology of a scalar top-philic dark matter candidate when adding a dimension-five contact interaction term, as motivated by possible underlying extensions of the Standard Model such as composite Higgs models. We show that the presence of contact interactions can have a major impact on the dark matter relic density as well as on its direct and indirect detection prospects, while the collider phenomenology of the model is unaffected. This underlines the complementarity of collider and cosmological constraints on dark matter models.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto A. Lineros ◽  
Mathias Pierre

Abstract We explore the connection between Dark Matter and neutrinos in a model inspired by radiative Type-II seessaw and scotogenic scenarios. In our model, we introduce new electroweakly charged states (scalars and a vector-like fermion) and impose a discrete ℤ2 symmetry. Neutrino masses are generated at the loop level and the lightest ℤ2-odd neutral particle is stable and it can play the role of a Dark Matter candidate. We perform a numerical analysis of the model showing that neutrino masses and flavour structure can be reproduced in addition to the correct dark matter density, with viable DM masses from 700 GeV to 30 TeV. We explore direct and indirect detection signatures and show interesting detection prospects by CTA, Darwin and KM3Net and highlight the complementarity between these observables.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Chiara Arina ◽  
Andrew Cheek ◽  
Ken Mimasu ◽  
Luca Pagani

AbstractWe consider the treatment of fermionic dark matter interacting with photons via dimension-5 and -6 effective operators, arguing that one should always use hypercharge gauge field form factors, instead of those of the photon. Beyond the simple observation that the electromagnetic form factor description breaks down at the electroweak scale, we show how the additional couplings to the Z boson predicted by the hypercharge form factors modify the relic density calculation and indirect detection limits for dark matter masses of a few tens of GeV and above. Furthermore, constraints from the invisible Z decay width can be competitive for masses below 10 GeV. We review the phenomenology of hypercharge form factors at the LHC as well as for direct and indirect detection experiments. We highlight where the electromagnetic and hypercharge descriptions lead to wildly different conclusions about the viable parameter space and the relative sensitivity of various probes, namely vector boson fusion versus mono-jet constraints from the LHC, and indirect versus direct searches, for larger dark matter masses. We find that the dimension-5 operators are strongly constrained by direct detection bounds, while for dimension-6 operators LHC mono-jet searches are competitive or better than the other probes we consider.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Ingolf Bischer ◽  
Tilman Plehn ◽  
Werner Rodejohann

Sterile neutrinos coupling only to third-generation fermions are attractive dark matter candidates. In an EFT approach we demonstrate that they can generate the observed relic density without violating constraints from direct and indirect detection. Such an EFT represents a gauged third-generation B-L model, as well as third-generation scalar or vector leptoquarks. LHC measurements naturally distinguish the different underlying models.


Author(s):  
Ivania M. Ávila ◽  
Valentina De Romeri ◽  
Laura Duarte ◽  
José W. F. Valle

AbstractWe reexamine the minimal Singlet $$+$$ + Triplet Scotogenic Model, where dark matter is the mediator of neutrino mass generation. We assume it to be a scalar WIMP, whose stability follows from the same $${\mathbb {Z}}_{2}$$ Z 2 symmetry that leads to the radiative origin of neutrino masses. The scheme is the minimal one that allows for solar and atmospheric mass scales to be generated. We perform a full numerical analysis of the signatures expected at dark matter as well as collider experiments. We identify parameter regions where dark matter predictions agree with theoretical and experimental constraints, such as neutrino oscillations, Higgs data, dark matter relic abundance and direct detection searches. We also present forecasts for near future direct and indirect detection experiments. These will further probe the parameter space. Finally, we explore collider signatures associated with the mono-jet channel at the LHC, highlighting the existence of a viable light dark matter mass range.


Author(s):  
Jesse G. Meyer

ABSTRACTShotgun proteomics techniques infer the presence and quantity of proteins using peptide proxies, which are produced by cleavage of all isolated protein by a protease. Most protein quantitation strategies assume that multiple peptides derived from a protein will behave quantitatively similar across treatment groups, but this assumption may be false for biological or technical reasons. Here, I describe a strategy called peptide correlation analysis (PeCorA) that detects quantitative disagreements between peptides mapped to the same protein. Simple linear models are used to assess whether the slope of a peptide’s change across treatment groups differs from the slope of all other peptides assigned to the same protein. Reanalysis of proteomic data from primary mouse microglia with PeCorA revealed that about 15% of proteins contain one discordant peptide. Inspection of the discordant peptides shows utility of PeCorA for direct and indirect detection of regulated PTMs, and also for discovery of poorly quantified peptides that should be excluded. PeCorA can be applied to an arbitrary list of quantified peptides, and is freely available as a script written in R.


2020 ◽  
Vol 12 (47) ◽  
pp. 5709-5717
Author(s):  
Jéssica Cordeiro Queiroz de Souza ◽  
Paula Rocha Chellini ◽  
Alessandra Lifsitch Viçosa ◽  
Marcus Vinícius Nora de Souza ◽  
Marcone Augusto Leal de Oliveira

A novel method was proposed for simultaneous determination of artesunate (ATS) and mefloquine (MFQ) in fixed-dose combination tablets by capillary zone electrophoresis with simultaneous direct and indirect detection by ultraviolet (CZE-UV).


Sign in / Sign up

Export Citation Format

Share Document