scholarly journals Local mean field approximation applied to a 3D spin crossover nanoparticles configuration: free energy analysis of the relative stability of the stationary states

2021 ◽  
Vol 1730 (1) ◽  
pp. 012043
Author(s):  
C. Cazelles ◽  
J. Linares ◽  
Y. Singh ◽  
P.-R. Dahoo ◽  
K. Boukheddaden
2021 ◽  
Vol 7 (5) ◽  
pp. 69
Author(s):  
Catherine Cazelles ◽  
Jorge Linares ◽  
Mamadou Ndiaye ◽  
Pierre-Richard Dahoo ◽  
Kamel Boukheddaden

The properties of spin crossover (SCO) nanoparticles were studied for five 2D hexagonal lattice structures of increasing sizes embedded in a matrix, thus affecting the thermal properties of the SCO region. These effects were modeled using the Ising-like model in the framework of local mean field approximation (LMFA). The systematic combined effect of the different types of couplings, consisting of (i) bulk short- and long-range interactions and (ii) edge and corner interactions at the surface mediated by the matrix environment, were investigated by using parameter values typical of SCO complexes. Gradual two and three hysteretic transition curves from the LS to HS states were obtained. The results were interpreted in terms of the competition between the structure-dependent order and disorder temperatures (TO.D.) of internal coupling origin and the ligand field-dependent equilibrium temperatures (Teq) of external origin.


2017 ◽  
Vol 936 ◽  
pp. 012052
Author(s):  
Salah Eddine Allal ◽  
Jorge Linares ◽  
K. Boukheddaden ◽  
Pierre Richard Dahoo ◽  
F. de Zela

2021 ◽  
Vol 26 ◽  
pp. 102074
Author(s):  
Catherine Cazelles ◽  
Yogendra Singh ◽  
Jorge Linares ◽  
Pierre-Richard Dahoo ◽  
Kamel Boukheddaden

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Hadey K. Mohamad

The magnetic properties of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising model with different anisotropies are investigated by using the mean-field approximation (MFA). In particular, the effect of magnetic anisotropies on the compensation phenomenon, acting on A-atoms and B-ones for the mixed-spin model, has been considered in a zero field. The free energy of a mixed-spin Ising ferrimagnetic system from MFA of the Hamiltonian is calculated. By minimizing the free energy, we obtain the equilibrium magnetizations and the compensation points. The phase diagram of the system in the anisotropy dependence of transition temperature has been discussed as well. Our results of this model predict the existence of many (two or three) compensation points in the ordered system on a simple cubic lattice.


2010 ◽  
Vol 12 (41) ◽  
pp. 13667 ◽  
Author(s):  
Vitaly Morozov ◽  
Nikita Lukzen ◽  
Victor Ovcharenko

1994 ◽  
Vol 03 (02) ◽  
pp. 421-430
Author(s):  
A. GAMBA ◽  
I. KOLOKOLOV ◽  
M. MARTELLINI

We introduce a gaussian probability density for the space-time distribution of worm-holes, thus taking effectively into account wormhole interaction. Using a mean-field approximation for the free energy, we show that giant wormholes are probabilistically suppressed in a homogenous isotropic “large” universe.


2010 ◽  
Vol 19 (04) ◽  
pp. 735-746 ◽  
Author(s):  
A. G. MAGNER ◽  
A. M. GZHEBINSKY ◽  
A. S. SITDIKOV ◽  
A. A. KHAMZIN ◽  
J. BARTEL

The collective moment of inertia is derived analytically within the cranking model in the adiabatic mean-field approximation at finite temperature. Using the nonperturbative periodic-orbit theory the semiclassical shell-structure components of the collective moment of inertia are obtained for any potential well. Their relation to the free-energy shell corrections are found semiclassically as being given through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. Shell effects in the moment of inertia disappear exponentially with increasing temperature. For the case of the harmonic-oscillator potential one observes a perfect agreement between semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.


1997 ◽  
Vol 11 (13) ◽  
pp. 565-570
Author(s):  
G. L. S. Paula ◽  
W. Figueiredo

We have applied the Glauber and Metropolis prescriptions to investigate the stationary states of the Ising model in one and two dimensions. We have employed the formalism of the master equation to follow the evolution of the system towards the stationary states. Although the Glauber and Metropolis transition rates lead the system to the same equilibrium states for the Ising model in the Monte Carlo simulations, we show that they can predict different results if we disregard the correlations between spins. The critical temperature of the one-dimensional Ising model cannot even be found by using the Metropolis algorithm and the mean field approximation. However, taking into account only correlations between nearest neighbor spins, the resulting stationary states become identical for both Glauber and Metropolis transition rates.


2018 ◽  
Vol 30 (9) ◽  
pp. 2530-2567 ◽  
Author(s):  
Sarah Schwöbel ◽  
Stefan Kiebel ◽  
Dimitrije Marković

When modeling goal-directed behavior in the presence of various sources of uncertainty, planning can be described as an inference process. A solution to the problem of planning as inference was previously proposed in the active inference framework in the form of an approximate inference scheme based on variational free energy. However, this approximate scheme was based on the mean-field approximation, which assumes statistical independence of hidden variables and is known to show overconfidence and may converge to local minima of the free energy. To better capture the spatiotemporal properties of an environment, we reformulated the approximate inference process using the so-called Bethe approximation. Importantly, the Bethe approximation allows for representation of pairwise statistical dependencies. Under these assumptions, the minimizer of the variational free energy corresponds to the belief propagation algorithm, commonly used in machine learning. To illustrate the differences between the mean-field approximation and the Bethe approximation, we have simulated agent behavior in a simple goal-reaching task with different types of uncertainties. Overall, the Bethe agent achieves higher success rates in reaching goal states. We relate the better performance of the Bethe agent to more accurate predictions about the consequences of its own actions. Consequently, active inference based on the Bethe approximation extends the application range of active inference to more complex behavioral tasks.


Sign in / Sign up

Export Citation Format

Share Document