ISRN Condensed Matter Physics
Latest Publications


TOTAL DOCUMENTS

61
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

Published By Hindawi (International Scholarly Research Network)

2090-7400, 2090-7397

2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Nam Lyong Kang ◽  
Sang Don Choi

Utilizing state-dependent projection operators and the Kang-Choi reduction identities, we derive the linear, first, and second-order nonlinear optical conductivities for an electron system interacting with phonons. The lineshape functions included in the conductivity tensors satisfy “the population criterion” saying that the Fermi distribution functions for electrons and Planck distribution functions for phonons should be combined in multiplicative forms. The results also contain energy denominator factors enforcing the energy conservation as well as interaction factors describing electron-phonon interaction properly. Therefore, the phonon absorption and emission processes as well as photon absorption and emission processes in all electron transition processes can be presented in an organized manner and the results can be represented in diagrams that can model the quantum dynamics of electrons in a solid.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Vasily E. Tarasov

Nonlocal elasticity models in continuum mechanics can be treated with two different approaches: the gradient elasticity models (weak nonlocality) and the integral nonlocal models (strong nonlocality). This paper focuses on the fractional generalization of gradient elasticity that allows us to describe a weak nonlocality of power-law type. We suggest a lattice model with spatial dispersion of power-law type as a microscopic model of fractional gradient elastic continuum. We demonstrate how the continuum limit transforms the equations for lattice with this spatial dispersion into the continuum equations with fractional Laplacians in Riesz's form. A weak nonlocality of power-law type in the nonlocal elasticity theory is derived from the fractional weak spatial dispersion in the lattice model. The continuum equations with derivatives of noninteger orders, which are obtained from the lattice model, can be considered as a fractional generalization of the gradient elasticity. These equations of fractional elasticity are solved for some special cases: subgradient elasticity and supergradient elasticity.


2014 ◽  
Vol 2014 ◽  
pp. 1-35 ◽  
Author(s):  
Enrique Maciá

The interest in the precise nature of critical states and their role in the physics of aperiodic systems has witnessed a renewed interest in the last few years. In this work we present a review on the notion of critical wave functions and, in the light of the obtained results, we suggest the convenience of some conceptual revisions in order to properly describe the relationship between the transport properties and the wave functions distribution amplitudes for eigen functions belonging to singular continuous spectra related to both fractal and quasiperiodic distribution of atoms through the space.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
V. Masilamani ◽  
J. Shanthi ◽  
V. Sheelarani

Nickel sulphate hexahydrate (NSH) and potassium magnesium nickel sulphate hexahydrate (KMNSH) single crystals were grown by slow evaporation method. The grown NSH crystal was found to crystallize in tetragonal system with space group P41 21 2 and KMNSH in monoclinic system with space group P121/c. The optical band gap energies of the grown crystals using UV-Vis spectral results for the doped and undoped NSH crystals were calculated. The presence of various functional groups in the crystal was identified by FTIR analysis. The thermal behaviour of the grown crystal has been studied by TGA/DTA analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
S. K. Deb Nath ◽  
Sung-Gaun Kim

At four different strain rates, the tensile stress strain relationship of single-walled 12-12 CNT with aspect ratio 9.1 obtained by Rebo potential (Brenner, 1990), Airebo potential (Stuart et al., 2000), and Tersoff potential (Tersoff, 1988) is compared with that of Belytschko et al. (2002) to validate the present model. Five different empirical potentials such as Rebo potential (Brenner, 1990), Rebo potential (Brenner et al., 2002), Inclusion LJ with Rebo potential (Brenner, 1990), Airebo potential (Stuart et al., 2000), and Tersoff potential (Tersoff, 1988) are used to simulate CNT subjected to axial tension differing its geometry at high strain rate. In Rebo potential (Mashreghi and Moshksar, 2010) only bond-order term is used and in Rebo potential (Brenner et al., 2002) torsional term is included with the bond-order term. At high strain rate the obtained stress strain relationships of CNTs subjected to axial tension differing its geometries using five different potentials are compared with the published results and from the comparison of the results, the drawback of the published results and limitations of different potentials are evaluated and the appropriate potential is selected which is the best among all other potentials to study the elastic, elastic-plastic properties of different types of CNTs. The present study will help a new direction to get reliable elastic, elastic-plastic properties of CNTs at different strain rates. Effects of long range Van der Waals interaction and torsion affect the elastic, elastic-plastic properties of CNTs and why these two effects are really needed to consider in bond-order Rebo potential (Brenner, 1990) to get reliable elastic, elastic-plastic properties of CNTs is also discussed. Effects of length-to-diameter ratio, layering of CNTs, and different empirical potentials on the elastic, elastic-plastic properties of CNTs are discussed in graphical and tabular forms with published results as a comparative manner to understand the nanomechanics of CNTs under tension using molecular dynamics simulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Shosuke Sasaki

The fractional quantum Hall (FQH) states with higher Landau levels have new characters different from those with 0<ν<2. The FQH states at 2<ν<3 are examined by developing the Tao-Thouless theory. We can find a unique configuration of electrons with the minimum Coulomb energy in the Landau orbitals. Therein the electron (or hole) pairs placed in the first and second nearest Landau orbitals can transfer to all the empty (or filled) orbitals at ν0=8/3, 14/5, 7/3, 11/5, and 5/2 via the Coulomb interaction. More distant electron (or hole) pairs with the same centre position have the same total momentum. Therefore, these pairs can also transfer to all the empty (or filled) orbitals. The sum of the pair energies from these quantum transitions yields a minimum at ν=ν0. The spectrum of the pair energy takes the lowest value at ν0 and a higher value with a gap in the neighbourhood of ν0 because many transitions are forbidden at a deviated filling factor from ν0. From the theoretical result, the FQH states with ν=ν0 are stable and the plateaus appear at the specific filling factors ν0.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Pooja Rana ◽  
U. P. Verma

Present work is influenced by the requirement of investigation of rare earth intermetallics due to the nonavailability of theoretical details and least information from experimental results. An attempt has been made to analyse the structural, electronic, magnetic and thermal properties of DyNi using full potential linear augmented plane wave method based on density functional theory. DyNi differs from other members of lanthanides nickelates as in ground state it crystallizes in FeB phase rather than orthorhombic CrB structure. The equilibrium lattice constant, bulk modulus, and pressure derivative of bulk modulus are presented in four polymorphs (FeB, CrB, CsCl and NaCl) of DyNi. At equilibrium the cell volume of DyNi for FeB structure has been calculated as 1098.16 Bohr3 which is comparable well with the experimental value 1074.75 Bohr3. The electronic band structure has been presented for FeB phase. The results for thermal properties, namely, thermal expansion coefficient, Gruneisen parameter, specific heat and Debye temperature at higher pressure and temperatures have been reported. The magnetic moments at equilibrium lattice constants have also been tabulated as the rare earth ions associated with large magnetic moments increase their utility in industrial field for the fabrication of electronic devices due to their magnetocaloric effect used in magnetic refrigeration.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
A. Khaledi-Nasab ◽  
M. Sabaiean ◽  
M. Sahrai ◽  
V. Fallahi

In this paper, we have performed a theoretical study on nonlinear optical rectification (OR) and second harmonic generation (SHG) for three-level dome-shaped InAs/GaAs quantum dots (QDs) in the presence of wetting layer (WL). We used the compact density matrix framework and effective mass approximation to investigate the second order nonlinear phenomena on InAs/GaAs QD. It is demonstrated that second harmonic generation (SHG), optical rectification (OR), and their mutual absorption and refractive index changes are quite sensitive to the size of QDs. The size variations have profound irregular behavior owing to distribution of envelope function on WL and QD simultaneously. Moreover it is found that R=13 nm is a critical radius where the regular variation takes place. It is shown that size variation causes blue shift until Critical radius (R=13 nm) and after that, increasing the QD size lead to redshift in second order phenomena.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Shosuke Sasaki

Kukushkin et al. have measured the electron spin polarization versus magnetic field in the fractional quantum Hall states. The polarization curves show wide plateaus and small shoulders. The 2D electron system is described by the total Hamiltonian (). Therein, is the sum of the Landau energies and classical Coulomb energies. is the residual interaction yielding Coulomb transitions. It is proven for any filling factor that the most uniform electron configuration in the Landau states is only one. The configuration has the minimum energy of . When the magnetic field is weak, some electrons have up-spins and the others down-spins. Then, there are many spin arrangements. These spin arrangements give the degenerate ground states of . We consider the partial Hamiltonian only between the ground states. The partial Hamiltonian yields the Peierls instability and is diagonalized exactly. The sum of the classical Coulomb and spin exchange energies has minimum for an interval modulation between Landau orbitals. Using the solution with the minimum energy, the spin polarization is calculated which reproduces the wide plateaus and small shoulders. The theoretical result is in good agreement with the experimental data.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
G. R. Gopinath ◽  
K. T. Ramakrishna Reddy

In2S3 films have been successfully deposited on Corning glass substrates via chemical bath deposition (CBD) method using acetic acid as a novel complexing agent. The layers were grown by employing synthesis using indium sulphate and thioacetamide (TA) as precursors by varying TA concentration in the range of 0.1–0.5 M, keeping other deposition parameters constant. Energy dispersive X-ray analysis (EDAX) revealed an increase of S/In ratio in the films with the increase of TA concentration in the solution. The X-ray diffraction (XRD) analysis indicated a change in preferred orientation from (311) plane related to cubic structure to the (103) direction corresponding to the tetragonal crystal structure. The evaluated crystallite size varied in the range of 15–25 nm with the increase of TA concentration. Morphological analysis showed that the granular structure and the granular density decrease with the raise of TA concentration. The optical properties of the layers were also investigated using UV-Vis-NIR analysis, which indicated that all the In2S3 films had the optical transmittance >60% in the visible region, and the evaluated energy band varied in the range of 2.87–3.32 eV with the change of TA concentration. Further, a thin film heterojunction solar cell was fabricated using a novel absorber layer, SnS, with In2S3 as a buffer. The unoptimized SnS/In2S3/ZnO:Al solar cell showed a conversion efficiency of 0.6%.


Sign in / Sign up

Export Citation Format

Share Document