scholarly journals A short proof on the Plancherel formula

2021 ◽  
Vol 2012 (1) ◽  
pp. 012080
Author(s):  
Ganling Zhou ◽  
Qiyuan Zhao
Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3091-3093
Author(s):  
Dejan Ilic ◽  
Darko Kocev

In this paper we give a short proof of the main results of Kumam, Dung and Sitthithakerngkiet (P. Kumam, N.V. Dung, K. Sitthithakerngkiet, A Generalization of Ciric Fixed Point Theorems, FILOMAT 29:7 (2015), 1549-1556).


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 250
Author(s):  
Frédéric Barbaresco ◽  
Jean-Pierre Gazeau

For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics.


2021 ◽  
Vol 344 (7) ◽  
pp. 112430
Author(s):  
Johann Bellmann ◽  
Bjarne Schülke
Keyword(s):  

2021 ◽  
Author(s):  
Maria Chudnovsky ◽  
Cemil Dibek
Keyword(s):  

2020 ◽  
Vol 8 (1) ◽  
pp. 36-39
Author(s):  
Lei Cao ◽  
Ariana Hall ◽  
Selcuk Koyuncu

AbstractWe give a short proof of Mirsky’s result regarding the extreme points of the convex polytope of doubly substochastic matrices via Birkhoff’s Theorem and the doubly stochastic completion of doubly sub-stochastic matrices. In addition, we give an alternative proof of the extreme points of the convex polytopes of symmetric doubly substochastic matrices via its corresponding loopy graphs.


Sign in / Sign up

Export Citation Format

Share Document