scholarly journals A short note on extreme points of certain polytopes

2020 ◽  
Vol 8 (1) ◽  
pp. 36-39
Author(s):  
Lei Cao ◽  
Ariana Hall ◽  
Selcuk Koyuncu

AbstractWe give a short proof of Mirsky’s result regarding the extreme points of the convex polytope of doubly substochastic matrices via Birkhoff’s Theorem and the doubly stochastic completion of doubly sub-stochastic matrices. In addition, we give an alternative proof of the extreme points of the convex polytopes of symmetric doubly substochastic matrices via its corresponding loopy graphs.

1961 ◽  
Vol 57 (3) ◽  
pp. 681-681 ◽  
Author(s):  
J. M. Hammersley

A doubly-stochastic matrix is an n × n matrix with non-negative elements such that each row and each column sums to 1. A permutation matrix is the result of permuting the rows of the unit n × n matrix. Birkhoff's theorem states that the doubly-stochastic matrices constitute the convex hull of the permutation matrices. Using Birkhoff's theorem, Farahat and Mirsky (1) showed that each doubly-stochastic matrix could be expressed as a convex combination of n2 − 2n + 2 permutation matrices, though not in general of fewer. Given Birkhoff's theorem, the Farahat-Mirsky refinement can also be proved quite shortly as follows.


1989 ◽  
Vol 21 (11) ◽  
pp. 1541-1546 ◽  
Author(s):  
P B Slater

Of all representations of a given point situated in a convex polytope, as a convex combination of extreme points, there exists one for which the probability or weighting distribution has maximum entropy. The determination of this multiplicative or exponential distribution can be accomplished by inverting a certain bijection—developed by Rothaus and by Bregman—of convex polytopes into themselves. An iterative algorithm is available for this procedure. The doubly stochastic matrix with a given set of transversals (generalized diagonal products) can be found by means of this method. Applications are discussed of the Rothaus -Bregman map to a proof of Birkhoff's theorem and to the calculation of trajectories of points leading to stationary or equilibrium values of the generalized permanent, in particular in spatial interaction modeling.


1980 ◽  
Vol 32 (1) ◽  
pp. 126-144 ◽  
Author(s):  
David Avis

A classical result in the theory of convex polyhedra is that every bounded polyhedral convex set can be expressed either as the intersection of half-spaces or as a convex combination of extreme points. It is becoming increasingly apparent that a full understanding of a class of convex polyhedra requires the knowledge of both of these characterizations. Perhaps the earliest and neatest example of this is the class of doubly stochastic matrices. This polyhedron can be defined by the system of equationsBirkhoff [2] and Von Neuman have shown that the extreme points of this bounded polyhedron are just the n × n permutation matrices. The importance of this result for mathematical programming is that it tells us that the maximum of any linear form over P will occur for a permutation matrix X.


1975 ◽  
Vol 78 (2) ◽  
pp. 327-331
Author(s):  
J. G. Mauldon

We prove a conjecture of (5), namely that the convex set of all infinite doubly stochastic matrices whose entries are all strictly less than θ(0 < θ ≤ 1) possesses extreme points if and only if θ is irrational.


1965 ◽  
Vol 8 (6) ◽  
pp. 829-830
Author(s):  
A. S. Glass

In this note we wish to present an alternative proof for the following well-known theorem [1, Theorem 16]: every convex polytope X in Euclidean n-dimensional space Rn is the intersection of a finite family of closed half-spaces. It will be supposed that the converse of this theorem has been verified by conventional arguments, namely: every bounded intersection of a finite family of closed half-spaces in Rn is a convex polytope [cf. 1, Theorem 15].


Sign in / Sign up

Export Citation Format

Share Document