scholarly journals Lump Solutions to the (2+1)-Dimensional Asymmetrical Nizhnik-Novikov-Veselov-Like Equation

2021 ◽  
Vol 2025 (1) ◽  
pp. 012049
Author(s):  
Fan Zhou ◽  
Wenting Li ◽  
Kun Jiang
Keyword(s):  
1990 ◽  
Vol 147 (8-9) ◽  
pp. 472-476 ◽  
Author(s):  
C.R Gilson ◽  
J.J.C Nimmo
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdul-Majid Wazwaz

Purpose This study aims to develop two integrable shallow water wave equations, of higher-dimensions, and with constant and time-dependent coefficients, respectively. The author derives multiple soliton solutions and a class of lump solutions which are rationally localized in all directions in space. Design/methodology/approach The author uses the simplified Hirota’s method and lump technique for determining multiple soliton solutions and lump solutions as well. The author shows that the developed (2+1)- and (3+1)-dimensional models are completely integrable in in the Painlené sense. Findings The paper reports new Painlevé-integrable extended equations which belong to the shallow water wave medium. Research limitations/implications The author addresses the integrability features of this model via using the Painlevé analysis. The author reports multiple soliton solutions for this equation by using the simplified Hirota’s method. Practical implications The obtained lump solutions include free parameters; some parameters are related to the translation invariance and the other parameters satisfy a non-zero determinant condition. Social implications The work presents useful algorithms for constructing new integrable equations and for the determination of lump solutions. Originality/value The paper presents an original work with newly developed integrable equations and shows useful findings of solitary waves and lump solutions.


2021 ◽  
pp. 2150437
Author(s):  
Liyuan Ding ◽  
Wen-Xiu Ma ◽  
Yehui Huang

A (2+1)-dimensional generalized Kadomtsev–Petviashvili–Ito equation is introduced. Upon adding some second-order derivative terms, its various lump solutions are explicitly constructed by utilizing the Hirota bilinear method and calculated through the symbolic computation system Maple. Furthermore, two specific lump solutions are obtained with particular choices of the parameters and their dynamical behaviors are analyzed through three-dimensional plots and contour plots.


Author(s):  
Jianqing Lü ◽  
Sudao Bilige ◽  
Xiaoqing Gao

AbstractIn this paper, with the help of symbolic computation system Mathematica, six kinds of lump solutions and two classes of interaction solutions are discussed to the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation via using generalized bilinear form with a dependent variable transformation. Particularly, one special case are plotted as illustrative examples, and some contour plots with different determinant values are presented. Simultaneously, we studied the trajectory of the interaction solution.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050117 ◽  
Author(s):  
Xianglong Tang ◽  
Yong Chen

Utilizing the Hirota bilinear method, the lump solutions, the interaction solutions with the lump and the stripe solitons, the breathers and the rogue waves for a (3[Formula: see text]+[Formula: see text]1)-dimensional Kudryashov–Sinelshchikov equation are constructed. Two types of interaction solutions between the lumps and the stripe solitons are exhibited. Some different breathers are given by choosing special parameters in the expressions of the solitons. Through a long wave limit of breathers, the lumps and rogue waves are derived.


2021 ◽  
Author(s):  
Hongcai Ma ◽  
Shupan Yue ◽  
Yidan Gao ◽  
Aiping Deng

Abstract Exact solutions of a new (2+1)-dimensional nonlinear evolution equation are studied. Through the Hirota bilinear method, the test function method and the improved tanh-coth and tah-cot method, with the assisstance of symbolic operations, one can obtain the lump solutions, multi lump solutions and more soliton solutions. Finally, by determining different parameters, we draw the three-dimensional plots and density plots at different times.


Author(s):  
Loriano Bonora ◽  
Driba D. Tolla
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document