scholarly journals Computer Simulation Analysis of Magnetically Controlled Reactor Using Matlab/Simulink for Minimizing of Power Grid Loss

2021 ◽  
Vol 2033 (1) ◽  
pp. 012058
Author(s):  
Bin Sun
1999 ◽  
Author(s):  
R. Wade Allen ◽  
Theodore J. Rosenthal ◽  
David H. Klyde ◽  
Jeffrey R. Hogue

2013 ◽  
Vol 336-338 ◽  
pp. 734-737
Author(s):  
Hong Yu Zheng ◽  
Ya Ning Han ◽  
Chang Fu Zong

In order to solve the problem of road feel feedback of vehicle steer-by-wire (SBW) system based on joystick, a road feel control strategy was established to analyze the road feel theory of traditional steer system, which included return, assist and damp control module. By verifying the computer simulation results with the control strategy from software of CarSim and Matlab/Simulink, it shows that the proposed strategy can effective get road feel in different vehicle speed conditions and could improve the vehicle maneuverability to achieve desired steering feel by different drivers.


Author(s):  
E.V. MISHCHENKO ◽  
V.Ya. MISHCHENKO ◽  
A.S. PECHURIN

The results of computer simulation of the crank-slider mechanism of the hay press, implemented in MATLAB/Simulink/SimMechanics are presented. The developed program allows investigating the influence of various parameters of the mechanism design on its kinematic and dynamic characteristics.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1918
Author(s):  
Shanshan Shi ◽  
Chen Fang ◽  
Haojing Wang ◽  
Jianfang Li ◽  
Yuekai Li ◽  
...  

As China proposes to achieve carbon peak by 2030 and carbon neutrality by 2060, as well as the huge pressure on the power grid caused by the load demand of the energy supply stations of electric vehicles (EVs), there is an urgent need to carry out comprehensive energy management and coordinated control for EVs’ energy supply stations. Therefore, this paper proposed a two-step intelligent control method known as ISOM-SAIA to solve the problem of the 24 h control and regulation of green/flexible EV energy supply stations, including four subsystems such as a photovoltaic subsystem, an energy storage subsystem, an EV charging subsystem and an EV battery changing subsystem. The proposed control method has two main innovations and contributions. One is that it reduces the computational burden by dividing the multi-dimensional mixed-integer programming problem of simultaneously optimizing the 24 h operation modes and outputs of four subsystems into two sequential tasks: the classification of data-driven operation modes and the rolling optimization of operational outputs. The other is that proper carbon transaction costs and carbon emission constraints are considered to help save costs and reduce carbon emissions. The simulation analysis conducted in this paper indicates that the proposed two-step intelligent control method can help green/flexible EV energy supply stations to optimally allocate energy flows between four subsystems, effectively respond to peak shaving and valley filling of power grid, save energy costs and reduce carbon emissions.


2006 ◽  
Vol 18 (Supplement) ◽  
pp. 123-123
Author(s):  
AOI OZAKI ◽  
KAZUYUKI MITSUI ◽  
SHIN INADA ◽  
NITARO SHIBATA ◽  
MARK R. BOYETT ◽  
...  

Author(s):  
Y. Ito ◽  
H. Komizo ◽  
T. Meguro ◽  
Y. Daido ◽  
I. Umebu

Sign in / Sign up

Export Citation Format

Share Document