external flow
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 84)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 416
Author(s):  
Lu Yang ◽  
Guangming Zhang

Currently, influence analysis of simulation parameters, especially the trailing edge shape and the corresponding modeling method on the force coefficients of NACA0012 under a high Reynolds number, is relatively sparse. In this paper, two trailing edge shapes are designed by three modeling methods and combined with three far-field distances to establish eighteen two-dimensional external flow fields. The same number of structured grids are generated by a unified grid strategy and the SST k-omega and the Spalart–Allmaras models are adopted to solve the NS equations to realize the numerical simulations. Unlike under low Reynolds numbers, the analysis results show that although the accuracy difference between the sharp trailing edge and the blunt trailing edge decreases as the attack angle range increases, the former is preferred in all studied ranges. As to the corresponding modeling methods, the NACA4 and the definition formula are preferred, the choice of which depends on the studied range. In particular, a greater number of data points adopted into the definition formula is not necessarily better. Considering the error ratios comprehensively, the simulation configurations of sharp trailing edge + 20 m far-field distance + SA/SST/SST/SST/SST/SA turbulence model obtains optimal simulation effects.


Author(s):  
Valerii Tuz ◽  
Nataliy Lebed ◽  
Maksym Lytvynenko

Perfecting the existing technologies and developing new ones require to rethink the processes in order to obtain qualitatively new results. Widespread use of cryogenic engineering in the chemical industry and medicine calls for a thorough analysis of both the efficiency of thermodynamic cycles and the hardware design of appropriate equipment. The power necessary to obtain low working medium temperatures is distributed between the cooling of the object and the losses in the various elements of the cryogenic setup. One of the best ways to increase the efficiency of the setup is to use the cold energy recovery. This is done by using various designs of recuperative heat exchangers, such as twisted heat exchangers. Existing methods of calculating the parameters of power equipment are based on empirical dependencies, which require some justification and clarification in order to be used for calculating cryogenic equipment parameters. The article describes the experimental setup, presents the research methods applied and analyses the results of the study on convective heat transfer in external flow past the tubular surface of the twisted heat exchanger. The obtained results for the laminar gas flow mode at Re < 2300 allowed determining the length of the initial heat section depending on the regime parameters of the contact phases and the geometric specifications of the twisted heat exchanger. The obtained dependence will make it possible to refine the method of calculating the parameters of the twisted heat exchanger in the annular channel.


2021 ◽  
Vol 43 (4) ◽  
pp. 25-33
Author(s):  
A.P. Chyrkova ◽  
A.A. Khalatov ◽  
V.S. Oliynik ◽  
O.V. Shikhabutinova

In Ukraine, the safety of modern thermal power plants depends on the reliable operation of the equipment installed on them. Unfortunately, the technical condition of the chimneys is not properly maintained. Of course, the modernization of basic equipment (boilers, switching to another type of fuel) leads to a decrease in the temperature of the exhaust gases. An important aspect to maintain the condition of the chimneys is to maintain the moisture of the exhaust gases. An important feature of the external flow of chimneys are large Reynolds numbers Re = wd/n, which reach 106 and more. In the thermal calculation only the average heat transfer coefficient on the outer surface of the pipe is usually determined, and the features of aerodynamics and local heat transfer due to the conicity of the pipe are not taken into account. The work is devoted to the study of aerodynamics and heat transfer in the air flow of a single conical chimney. The method of computer modeling with numerical integration of equations of motion and energy was used in the research. At the first stage, the single pipe with the uniform flow profile is considered. Further, the influence of the surrounding infrastructure on the aerodynamics and heat transfer of a single conical tube is studied. The single conical vertical pipe with 40 m height, 1.7 m diameter at the base and 0.85 m in the mouth was used for the calculation. The computer model was calculated in the ANSYS2020-R1 program. The model is developed in a homogeneous area with the air environment. In order to obtain reliable results, the study was conducted to obtain the optimal set of the grid parameters for the heat transfer conditions. The grids with parameters that affect the distance of the first node from the cylinder wall (options a, b, c, d) and the rate of increase in the size of the elements as they move away from the area of interest (Growth rate GR) were studied. The type of the cylindrical pipe with constant diameter of 1.7 m has been chosen to analyze the sensitivity and to check the grid. The turbulence model has been choosen as the following: RNG k-ε model which is common for the tasks of this class, the Enhanced Wall Function, the solution algorithm for the connection of the velocity pressure in stable flows Simplex. It is determined that in case if the distance between the first node from the cylinder wall and the area of interest (Growth rate GR) is more than 8 mm, instability and deviation of the obtained data from the values of the average coefficient of more than 20% appears. As a result of the research, the parameter grid area matching to the “2d” option of table 1 has been selected, i.e.: GR = 1.1, h = 8 mm. In the study of aerodynamics and heat transfer, the conical tube is conventionally divided into 22 sections (with 1 m height each). The case of uniform flow velocity in front of the pipe has been considered. As seen, the maximum value of the heat transfer coefficient is in the Zone(21-22). The research shows that oncoming flow velocity of 25 m/s causes the average value of heat transfer coefficient of the conical pipe 62.5 W/m2K, and 61.1 W/m2K according to the known formula . This indicates a small effect of taper on the average heat transfer of the entire pipe. In the calculations, three types of surrounding areas are considered: A - open coasts of seas, lakes and reservoirs, rural areas, including buildings less than 10 m high; B - urban areas, forests and other areas, evenly covered with obstacles higher than 10 m; C - urban areas with dense buildings with buildings higher than 25 m. Thus, the wind speed profiles for different types of terrain are nonlinear. The wind speed profile in front of the pipe (type of terrain) has a significant effect on the heat transfer coefficient. This confirms the need to take into account the type of terrain and the velocity profile in front of the pipe for local heat transfer.


2021 ◽  
Vol 11 (24) ◽  
pp. 11702
Author(s):  
Songjune Lee ◽  
Cheolung Cheong ◽  
Byunghee Kim ◽  
Jaehwan Kim

The interior noise of a high-speed train due to the external flow disturbance is more than ever a major problem for product developers to consider during a design state. Since the external surface pressure field induces wall panel vibration of a high-speed train, which in turn generates the interior sound, the first step for low interior noise design is to characterize the surface pressure fluctuations due to external disturbance. In this study, the external flow field of a high-speed train cruising at a speed of 300 km/h in open-field and tunnel are numerically investigated using high-resolution compressible LES (large eddy simulation) techniques, with a focus on characterizing fluctuating surface pressure field according to surrounding conditions of the cruising train, i.e., open-field and tunnel. First, compressible LES schemes with high-resolution grids were employed to accurately predict the exterior flow and acoustic fields around a high-speed train simultaneously. Then, the predicted fluctuating pressure field on the wall panel surface of a train was decomposed into incompressible and compressible ones using the wavenumber-frequency transform, given that the incompressible pressure wave induced by the turbulent eddies within the boundary layer is transported approximately at the mean flow and the compressible pressure wave propagated at the vector sum of the sound speed and the mean flow velocity. Lastly, the power levels due to each pressure field were computed and compared between open-field and tunnel. It was found that there is no significant difference in the power levels of incompressible surface pressure fluctuations between the two cases. However, the decomposed compressible one in the tunnel case is higher by about 2~10 dB than in the open-field case. This result reveals that the increased interior sound of the high-speed train running in a tunnel is due to the compressible surface pressure field.


2021 ◽  
Vol 33 (12) ◽  
pp. 123609
Author(s):  
Zhonglin Du ◽  
Junyu Huang ◽  
Qiang Liu ◽  
R. Deepak Selvakumar ◽  
Jian Wu

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3008
Author(s):  
Antonio Lamura ◽  
Adriano Tiribocchi

The phase separation of a two-dimensional active binary mixture is studied under the action of an applied shear through numerical simulations. It is highlighted how the strength of the external flow modifies the initial shape of growing domains. The activity is responsible for the formation of isolated droplets which affect both the coarsening dynamics and the morphology of the system. The characteristic dimensions of domains along the flow and the shear direction are modulated in time by oscillations whose amplitudes are reduced when the activity increases. This induces a broadening of the distribution functions of domain lengths with respect to the passive case due to the presence of dispersed droplets of different sizes.


2021 ◽  
Vol 62 (12) ◽  
Author(s):  
Abdul Raouf Tajik ◽  
Kursat Kara ◽  
Vladimir Parezanović

Abstract This experimental study investigates the effects of internal geometry modifications on the performance of a curved Sweeping Jet actuator. The modifications are applied to the geometry of the feedback channel and the mixing chamber Coanda surface, and the resulting actuator properties are evaluated using time-resolved static pressure measurements inside the actuator and hot-wire measurements of the external flow. The major result is that small, localized modifications of the curved sweeping jet actuator geometry can lead to a complete change in the external flow regime, making the jet velocity distribution homogeneous, similar to the angled variant of the actuator. The Coanda surface shape is identified as the primary cause of the external jet adopting the bifurcated or homogeneous flow regime. The relationships between the sweeping frequency, jet deflection angle, required supply pressure, and pressure fluctuations are analyzed and discussed in detail. External flow behavior and coherence are characterized by phase-averaged, phase-locked velocity profiles and auto-correlation of the velocity signals. Graphical abstract


2021 ◽  
Author(s):  
Nadine Urban ◽  
Maximillian Hoerner ◽  
Wilfried Weber ◽  
Can Dincer

Circumventing the limitations of current bioassays, we introduce the first light-controlled assay, the OptoAssay, towards wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bi-directional movement of assay components, only by changing the wavelength of light. Combined with smartphones, OptoAssays obviate the need for external flow control systems like pumps or valves and signal readout devices.


Sign in / Sign up

Export Citation Format

Share Document