Road Feel Design for Vehicle Steer-by-Wire System Based on Joystick

2013 ◽  
Vol 336-338 ◽  
pp. 734-737
Author(s):  
Hong Yu Zheng ◽  
Ya Ning Han ◽  
Chang Fu Zong

In order to solve the problem of road feel feedback of vehicle steer-by-wire (SBW) system based on joystick, a road feel control strategy was established to analyze the road feel theory of traditional steer system, which included return, assist and damp control module. By verifying the computer simulation results with the control strategy from software of CarSim and Matlab/Simulink, it shows that the proposed strategy can effective get road feel in different vehicle speed conditions and could improve the vehicle maneuverability to achieve desired steering feel by different drivers.

Author(s):  
Guang Xia ◽  
Yan Xia ◽  
Xiwen Tang ◽  
Linfeng Zhao ◽  
Baoqun Sun

Fluctuations in operation resistance during the operating process lead to reduced efficiency in tractor production. To address this problem, the project team independently developed and designed a new type of hydraulic mechanical continuously variable transmission (HMCVT). Based on introducing the mechanical structure and transmission principle of the HMCVT system, the priority of slip rate control and vehicle speed control is determined by classifying the slip rate. In the process of vehicle speed control, the driving mode of HMCVT system suitable for the current resistance state is determined by classifying the operation resistance. The speed change rule under HMT and HST modes is formulated with the goal of the highest production efficiency, and the displacement ratio adjustment surfaces under HMT and HST modes are determined. A sliding mode control algorithm based on feedforward compensation is proposed to address the problem that the oil pressure fluctuation has influences on the adjustment accuracy of hydraulic pump displacement. The simulation results of Simulink show that this algorithm can not only accurately follow the expected signal changes, but has better tracking stability than traditional PID control algorithm. The HMCVT system and speed control strategy models were built, and simulation results show that the speed control strategy can restrict the slip rate of driving wheels within the allowable range when load or road conditions change. When the tractor speed is lower than the lower limit of the high-efficiency speed range, the speed change law formulated in this paper can improve the tractor speed faster than the traditional rule, and effectively ensure the production efficiency. The research results are of great significance for improving tractor’s adaptability to complex and changeable working environment and promoting agricultural production efficiency.


2021 ◽  
Vol 2121 (1) ◽  
pp. 012031
Author(s):  
Chuanbin Wei ◽  
Lizhu Zhang ◽  
You Fu ◽  
Faying Xia

Abstract Nowadays, the automobile industry is gradually developing towards the trend of electrification and intelligence. Compared with the traditional steering system, the steer-by-wire system cancels the mechanical transmission structure, reduces the space utilization, reduces the probability of damage to the driver caused by the steering system in the collision accident, and improves the driving portability and enhances the driver’s handling experience. The road feeling feedback of steer-by-wire system has the greatest impact on the driver’s driving experience. This paper discusses the research methods of road feeling feedback of steer-by-wire system, introduces the basic structure of road feeling feedback of steer-by-wire system, the basic idea of dynamic modeling, the establishment of simulation model of road feeling feedback, and the establishment method of control strategy and simulation platform of road feeling feedback. Finally, it summarizes and prospects in order to provide basic information and perspectives for the development and research of steer-by-wire system.


Author(s):  
Patrick Krupka ◽  
Paul Lukowicz ◽  
Christopher Kreis ◽  
Bastian Boßdorf-Zimmer

Author(s):  
Irfan Khan ◽  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Nicola Amati

Abstract This paper presents a controller dedicated to the lateral and longitudinal vehicle dynamics control for autonomous driving. The proposed strategy exploits a Model Predictive Control strategy to perform lateral guidance and speed regulation. To this end, the algorithm controls the steering angle and the throttle and brake pedals for minimizing the vehicle’s lateral deviation and relative yaw angle with respect to the reference trajectory, while the vehicle speed is controlled to drive at the maximum acceptable longitudinal speed considering the adherence and legal speed limits. The technique exploits data computed by a simulated camera mounted on the top of the vehicle while moving in different driving scenarios. The longitudinal control strategy is based on a reference speed generator, which computes the maximum speed considering the road geometry and lateral motion of the vehicle at the same time. The proposed controller is tested in highway, interurban and urban driving scenarios to check the performance of the proposed method in different driving environments.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fei-xiang Xu ◽  
Xin-hui Liu ◽  
Wei Chen ◽  
Chen Zhou ◽  
Bing-wei Cao

To improve the road feeling of the steer-by-wire (SBW) system, a fractional order PID (proportion-integral-derivative) method with a fault tolerant module is proposed in this paper. Firstly, the overall road feeling control strategy of the SBW system is introduced, and then the mathematical model of road feeling control is established. Secondly, a fractional order PID (FOPID) controller is designed to control torque of the road feeling motor. Furthermore, genetic algorithm (GA) is applied to tune the FOPID controller’s parameters. Thirdly, a fault tolerant module aiming at potential failures of the motor’s torque sensor is studied to improve the reliability of the system. Kalman Filter (KF) algorithm is utilized in the fault tolerant module so as to detect failures of the motor’s torque sensor, and then fault tolerant module reconfigures the motor’s torque estimated by KF as a substitute when the torque sensor fails. Finally, simulations based on MATLAB are performed with the proposed control strategy to identify its performance, and the results demonstrate that the proposed control method is feasible and accurate.


Author(s):  
Jiawei Wang ◽  
Hai Wang ◽  
Canghua Jiang ◽  
Zhenwei Cao ◽  
Zhihong Man ◽  
...  

2014 ◽  
Vol 1044-1045 ◽  
pp. 738-742
Author(s):  
Wen Xia You ◽  
Zi Heng Zhou ◽  
Jun Xiao Chang ◽  
Gang Sun

Many references have been focused on PQ controllers and V/f controllers, but there are some models with different components share the same control strategy. These models have different simulation results of their own. In this paper, two ordinary PQ controllers and two ordinary V/f controllers have been chosen to study the simulation results of them by Matlab/Simulink. By analyzing voltage and current waveforms of load, it has been decided which PQ controller has result which contains less unbalanced current and less harmonics, and so it is with the V/f controllers. Then the chosen controllers have been applied to an example of Master-slave control strategy for a simple micro-grid, which furthermore proves the dynamic quality of the chosen models. In this way, the problem to choose better models is solved.


2013 ◽  
Vol 431 ◽  
pp. 241-246
Author(s):  
Yi Chen ◽  
Jun Liu

The distributed drive electric vehicle was studied in this paper. According to the advantages of the controllable and accurate wheel speed and torque the ideal differential assisted characteristic curve was designed under different vehicle speed as well as a control strategy for differential power steering, a vehicle dynamics model based on CarSim/Simulink and simulation experiments were conducted. The experimental results indicated that on the premise to guarantee the road feeling, the control strategy for differential power steering decreased the steering wheel torque, angle and reduced driver's work-load , improved markedly the steering portability of the distributed drive electric vehicle.


Sign in / Sign up

Export Citation Format

Share Document