scholarly journals Preliminary Neutronic Analysis of 150 MWt High-Temperature Gas Reactor to Produced Electricity in Small Area

2021 ◽  
Vol 2072 (1) ◽  
pp. 012011
Author(s):  
Nining Yuningsih ◽  
Dwi Irwanto

Abstract There are small areas in Indonesia with insufficient electricity. High-Temperature Gas Reactor (HTGR) is a promising nuclear power plant that can be used in such areas as its capability to produce electricity and co-generation applications. A preliminary study on the neutronic aspect of the 150 MWt HTGR design is performed in this research. High Temperature Engineering Test Reactor (HTTR) is used as a basic model. The calculation was performed by Standard Thermal Reactor Analysis Code (SRAC) code, and Japanese Evaluated Nuclear Data Library (JENDL) 4.0 as nuclear data library. As a result, by increasing HTTR fuel assembly geometry to 1.5 times its original and using higher uranium enrichment, the reactor can be operated for five years.

2011 ◽  
Vol 59 (2(3)) ◽  
pp. 1073-1075 ◽  
Author(s):  
Suhail Ahmad Khan ◽  
V. Jagannathan ◽  
Usha Pal ◽  
R. Karthikeyan ◽  
Argala Srivastava

Author(s):  
Jia Qianqian ◽  
Guo Chao ◽  
Li Jianghai ◽  
Qu Ronghong

The nuclear power plant with two modular high-temperature gas-cooled reactors (HTR-PM) is under construction now. The control room of HTR-PM is designed. This paper introduces the alarm displays in the control room, and describes some verification and validation (V&V) activities of the alarm system, especially verification for some new human factor issues of the alarm system in the two modular design. In HTR-PM, besides the regular V&V similar to other NPPs, the interference effect of the alarm rings of the two reactor modules at the same time, and the potential discomfort of the two reactor operators after shift between them are focused. Verifications at early stage of the two issues are carried on the verification platform of the control room before the integrated system validation (ISV), and all the human machine interfaces (HMIs) in the control room, including the alarm system are validated in ISV. The test results on the verification platform show that the alarm displays and rings can support the operators understand the alarm information without confusion of the two reactors, and the shift between the two reactor operators have no adverse impact on operation. The results in ISV also show that the alarm system can support the operators well.


2017 ◽  
Vol 146 ◽  
pp. 02002 ◽  
Author(s):  
Zhigang Ge ◽  
Haicheng Wu ◽  
Guochang Chen ◽  
Ruirui Xu

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jinghan Zhang ◽  
Jun Zhao ◽  
Jiejuan Tong

Nuclear safety goal is the basic standard for limiting the operational risks of nuclear power plants. The statistics of societal risks are the basis for nuclear safety goals. Core damage frequency (CDF) and large early release frequency (LERF) are typical probabilistic safety goals that are used in the regulation of water-cooled reactors currently. In fact, Chinese current probabilistic safety goals refer to the Nuclear Regulatory Commission (NRC) and the International Atomic Energy Agency (IAEA), and they are not based on Chinese societal risks. And the CDF and LERF proposed for water reactor are not suitable for high-temperature gas-cooled reactors (HTGR), because the design of HTGR is very different from that of water reactor. And current nuclear safety goals are established for single reactor rather than unit or site. Therefore, in this paper, the development of the safety goal of NRC was investigated firstly; then, the societal risks in China were investigated in order to establish the correlation between the probabilistic safety goal of multimodule HTGR and Chinese societal risks. In the end, some other matters about multireactor site were discussed in detail.


2011 ◽  
Vol 59 (2(3)) ◽  
pp. 1052-1056 ◽  
Author(s):  
Z. G. Ge ◽  
Z. X. Zhao ◽  
H. H. Xia ◽  
Y. X. Zhuang ◽  
T. J. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document