scholarly journals Application of LQR Full-State Feedback Controller for Rotational Inverted Pendulum

2021 ◽  
Vol 2111 (1) ◽  
pp. 012006
Author(s):  
N Setiawan ◽  
G N P Pratama

Abstract The rotational inverted pendulum is an interesting subject for some researchers, especially control engineers. Its nonlinear and underactuated characteristic make it quite challenging to stabilize it. Hence, a proper control law is a must to make it stable. Here, in this paper, we present a control law using LQR (Linear-Quadratic Regulator) to stabilize the rotational inverted pendulum. The experiments are carried out by linearizing the model and simulate the response in MATLAB. The results show that the controller succeeds to stabilize the states of rotational inverted pendulum to their respective equilibrium points. Even more, it provides zero settling errors.

Author(s):  
Muhamad Rausyan Fikri ◽  
Djati Wibowo Djamari

This study investigated the capability of a group of agents to form a desired shape formation by designing the feedback control using a linear quadratic regulator. In real application, the state condition of agents may change due to some particular problems such as a slow input response. In order to compensate for the problem that affects agent-to-agent coordination, a robust regulator was implemented into the formation algorithm. In this study, a linear quadratic regulator as the full-state feedback of robust regulator method for shape formation was considered. The result showed that a group of agents can form the desired shape (square) formation with a modification of the trajectory shape of each agent. The results were validated through numerical experiments.


Author(s):  
MUHAMMAD ARROFIQ ◽  
LUKMAN SIDIQ NUGROHO ◽  
FAHMIZAL FAHMIZAL ◽  
ESA APRIASKAR

ABSTRAKMakalah ini memberikan analisis perbandingan antara teknik kendali klasik yaitu kendali PID dengan teknik kendali modern pada sistem Eddy current brakes dinamometer. Eddy current brakes merupakan sistem pengereman modern yang membutuhkan sebuah sistem kendali untuk menunjang kinerja pengereman. Selama ini kendali PID lebih sering digunakan, namun di beberapa kondisi dinilai kurang optimal. Dengan demikian, diperlukan pengembangan kendali yang modern dan optimal yaitu full state feedback Linear Quadratic Regulator (LQR). Perbandingan respon waktu pengereman disimulasikan menggunakan Matlab/Simulink. Hasil simulasi menunjukkan respon waktu pengereman pada kendali LQR lebih baik dibandingkan dengan kendali PID, dengan Ts = 2.12 detik, Tr = 1.18 detik, dan tanpa overshoot. Adapun kendali PID, meskipun menghasilkan Ts = 0.27 detik dan Tr = 0.18 detik, namun demikian masih terdapat overshoot sebesar 0.7%.Kata kunci: Eddy brakes, PID, LQR, Matlab ABSTRACTThis paper provides a comparative analysis between PID control as a classical control technique and modern control technique in the dinamometer Eddy current brakes system. Eddy current brakes is a modern braking system that requires a control system to support the braking performance. PID control is often used to be implemented but in some conditions it is less optimal. Therefore, it is necessary to develop a modern and optimal control, such as a full state feedback Linear Quadratic Regulator (LQR). The comparison of the braking time responses were simulated using Matlab/Simulink. The simulation results show that the response of LQR control is better than the PID, with Ts = 2.12 seconds, Tr = 1.18 seconds, and without overshoot. On the other side, PID control, although having Ts = 0.27 seconds and Tr = 0.18 seconds, there is still an overshoot about 0.7%.Keywords: Eddy brakes, PID, LQR, Matlab


Sign in / Sign up

Export Citation Format

Share Document