shape formation
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 34)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 65 (6) ◽  
Author(s):  
Wenjie Chu ◽  
Wei Zhang ◽  
Haiyan Zhao ◽  
Zhi Jin ◽  
Hong Mei

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bin Zhang ◽  
Wendi Chen ◽  
Xing Li ◽  
Wenjing Ren ◽  
Li Chen ◽  
...  

Abstract Background Leaf shape is an important agronomic trait in ornamental kale (Brassica oleracea L. var. acephala). Although some leaf shape-related genes have been reported in ornamental kale, the detailed mechanism underlying leaf shape formation is still unclear. Here, we report a lobed-leaf trait in ornamental kale, aiming to analyze its inheritance and identify the strong candidate gene. Results Genetic analysis of F2 and BC1 populations demonstrate that the lobed-leaf trait in ornamental kale is controlled by a single dominant gene, termed BoLl-1 (Brassica oleracea lobed-leaf). By performing whole-genome resequencing and linkage analyses, the BoLl-1 gene was finely mapped to a 127-kb interval on chromosome C09 flanked by SNP markers SL4 and SL6, with genetic distances of 0.6 cM and 0.6 cM, respectively. Based on annotations of the genes within this interval, Bo9g181710, an orthologous gene of LATE MERISTEM IDENTITY 1 (LMI1) in Arabidopsis, was predicted as the candidate for BoLl-1, and was renamed BoLMI1a. The expression level of BoLMI1a in lobed-leaf parent 18Q2513 was significantly higher compared with unlobed-leaf parent 18Q2515. Sequence analysis of the parental alleles revealed no sequence variations in the coding sequence of BoLMI1a, whereas a 1737-bp deletion, a 92-bp insertion and an SNP were identified within the BoLMI1a promoter region of parent 18Q2513. Verification analyses with BoLMI1a-specific markers corresponding to the promoter variations revealed that the variations were present only in the lobed-leaf ornamental kale inbred lines. Conclusions This study identified a lobed-leaf gene BoLMI1a, which was fine-mapped to a 127-kb fragment. Three variations were identified in the promoter region of BoLMI1a. The transcription level of BoLMI1a between the two parents exhibited great difference, providing new insight into the molecular mechanism underlying leaf shape formation in ornamental kale.


2021 ◽  
Vol 27 (S1) ◽  
pp. 3316-3319
Author(s):  
Nancy Gutiérrez ◽  
Dhirendra Kumar Tiwari ◽  
Javier Villegas ◽  
Francisco Reynoso

AbstractThe present work defines the structural and morphological behavior of ZnO nanoparticles (ZnONP) synthesized via using Ricinus Communis (Castor) extracts. Two precipitating agents (bases) were used to regulate the pH (10), in presence of this natural extract the determination of structural, morphological and functional groups availability was performed to evaluate the enhancement in crystallite size, shape formation and colloidal stability of the nanoparticle.


Author(s):  
Ethan C. Garner

One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Bin Zhang ◽  
Wendi Chen ◽  
Xing Li ◽  
Wenjing Ren ◽  
Li Chen ◽  
...  

Abstract Background: Leaf shape is an important agronomic trait in ornamental kale (Brassica oleracea L. var. acephala). Although some leaf shape-related genes have been reported in ornamental kale, the detailed mechanism underlying leaf shape formation is still unclear. Here, we report a lobed-leaf trait in ornamental kale, aiming to analyze its inheritance and identify the strong candidate gene.Results: Genetic analysis of F2 and BC1 populations demonstrate that the lobed-leaf trait in ornamental kale is controlled by a single dominant gene, termed BoLl-1. By performing whole-genome resequencing and linkage analyses, the BoLl-1 gene was finely mapped to a 127-kb interval on chromosome C09 flanked by SNP markers SL4 and SL6, with genetic distances of 0.6 cM and 0.6 cM, respectively. Based on annotations of the genes within this interval, Bo9g181710, an orthologous gene of LATE MERISTEM IDENTITY 1 (LMI1) in Arabidopsis, was predicted as the candidate for BoLl-1, and was renamed BoLMI1. The expression level of BoLMI1 in lobed-leaf parent 18Q2513 was significantly higher compared with unlobed-leaf parent 18Q2515. Sequence analysis of the parental alleles revealed no sequence variations in the coding sequence of BoLMI1, whereas a 1737-bp deletion, a 92-bp insertion and an SNP were identified within the BoLMI1 promoter region of parent 18Q2513. Verification analyses with BoLMI1-specific markers corresponding to the promoter variations revealed that the variations were present only in the lobed-leaf ornamental kale inbred lines.Conclusions: This study demonstrated that promoter variations strongly enhance the transcription level of BoLMI1 and cause the leaf shape change from unlobed to lobed, providing new insight into the molecular mechanism underlying leaf shape formation in ornamental kale.


2021 ◽  
Vol 2 (1 (110)) ◽  
pp. 90-96
Author(s):  
Andrey Rudyk ◽  
Volodymyr Chupryna ◽  
Vladislav Rudyk

There are several general methods for correcting errors related to positioning the machine tool structural units. The task to achieve optimal manufacturing accuracy can be resolved by using a compatible solution to vector equations, a variation of the shape formation function, or applying a matrix of transfer coefficients. However, there is no mutual relationship between various calculation methods for the case of grinding flat surfaces. The methods should be simplified and tested for the elongated shape formation function while considering the links’ dimensions. This paper reports a study into the accuracy of grinding flat surfaces, determining and reducing the share of manufacturing errors. The content of variation matrices and transfer coefficients has been substantiated. The comparison of the orientation angles of the grinding machine headstock relative to the machine tool bed has demonstrated close results from all methods. These angles were taken as machine tool errors. The calculation error does not exceed 1.5 %. The experiments are consistent with the calculations. Different signs of the transfer coefficients in the orientation angles of grinding machine headstocks in the matrix make it possible to mutually compensate for the overall impact. The calculations have shown that the accuracy of the side-end machining is largely affected by a change in the orientation angle in the vertical plane. The effect exerted on the accuracy of individual mated parts by the machine tool structural units has been estimated. The calculations show that the error of positioning a part in the drum window acquires the highest absolute values and is random in nature, which requires a more accurate base positioning. The findings from both theoretical and experimental studies have been applied. The mathematical model makes it possible to determine the degree of scattering the end surface around the base plane via its variance. The measured trajectory provides diagnostic information about the sources of error in the machine tool assembly. A task to calculate the accuracy of the end-grinding machine tool can be solved for other models of machine tools in the same way


Sign in / Sign up

Export Citation Format

Share Document