scholarly journals Sound Absorption Performance of Aluminum Silicate Fiber for Noise and Vibration Reduction of Distribution Transformer

2022 ◽  
Vol 2152 (1) ◽  
pp. 012037
Author(s):  
Qunli Chen ◽  
Wengeng Wu ◽  
Xu Gao ◽  
Yibiao Huang ◽  
Xiangwen Chen ◽  
...  

Abstract In view of the low-frequency noise problem in urban substation, the sound absorption (SA) properties of aluminum silicate fibers (ASF) with different materials, unit weight, plate thickness and cavity thickness were tested in this paper. It was found that the high-purity ASF with larger unit weight, plate thickness and cavity thickness had larger low-frequency SA coefficient, which provided technical support for the development of new low-frequency noise reduction materials for substation.

2013 ◽  
Vol 468 ◽  
pp. 134-140 ◽  
Author(s):  
Xia Zhang ◽  
Shu Ning Duan ◽  
Mei Gen Cao ◽  
Juan Mo ◽  
Yu Han Sun ◽  
...  

In allusion to the characteristic that transformer noise is mainly low-frequency noise, firstly the sound absorber is studied and analyzed on aspect of materials, sound absorption structure cavity thickness and punching rate etc in standing wave tube laboratory, secondly transformer substation low-frequency sound absorber is presented, and finally sound absorption properties of absorber is verified through random incidence Test. The analyses and study indicates that: compared with thin plate resonance absorber and micropunching sound absorber, the sound absorption band width of transformer substation low-frequency sound absorber has been improved under unchanged sound absorption effect and transformer low-frequency noise may be effectively absorbed.


2021 ◽  
Vol 263 (1) ◽  
pp. 5600-5604
Author(s):  
Min Yang ◽  
Xianhui Li ◽  
Zenong Cai ◽  
Junjuan Zhao ◽  
Peng Zhang ◽  
...  

In this paper, the sound absorption characteristics of cubic nonlinear sound-absorbing structures are analyzed by theoretical and numerical methods. The slow flow equations of the system are derived by using complexification averaging method, and the nonlinear equations which describe the steady- state response are obtained. The resulting equations are verified by comparing the results which respectively obtained from complexification-averaging method and Runge-Kutta method. It is helpful to optimize the structural parameters and further improve the sound absorption performance to study the variation of the sound absorption performance of cubic nonlinear structure with its structural parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Binxia Yuan ◽  
Xinyi Fang ◽  
Jianben Liu ◽  
Yan Liu ◽  
Rui Zhu

At present, the scale of China’s power grid is becoming larger and larger, and the control of low-frequency noise in substations (especially for transformers) is very important. The sound-absorbing materials have become one of the important ways to control low-frequency noise. The single polyurethane material cannot satisfy the requirements for reducing low-frequency noise, so it is very necessary to study its composite with other materials. In the paper, the flexible polyurethane foam and Al2O3 nanoparticle composites were obtained by the impregnation method. The method was simple, safe, and easy to control. The morphology and sound absorption coefficient of the foam materials before and after filling were analyzed. Single-hole acoustic cavity models of PU and Al2O3-PU composite were established through the finite element. The absorption and dissipation process of sound pressure for single hole was studied to understand the energy dissipation process. Meanwhile, through studying acoustic energy storage and acoustic energy dissipation, the loss factor of a single hole was obtained, which can predict the change rule of the sound absorption coefficient for PU foam and Al2O3-PU.


Akustika ◽  
2021 ◽  
pp. 52-60
Author(s):  
Andrey Vasilyev

The importance of the problem of low-frequency noise and vibration reduction now may be considered as urgent. Increased influence of low-frequency noise and vibration may cause both human health problems and equipment damage. Power plants (internal combustion engines, compressors, heat-exchanges etc.) are one of the main low-frequency noise and vibration sources. The principles of classification of methods of power plants low-frequency noise and vibration reduction are suggested. Author is proposing energetic approach, according of which all the methods and arrangements of reduction may be classified as passive (adaptive and non-adaptive), active and hybrid passive-active. The classification is illustrated by the different examples, including constructions of mufflers and dampers, some of which are developed by author.


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 120-127
Author(s):  
Mikhail D. Vorobyev ◽  
◽  
Dmitriy N. Yudaev ◽  
Andrey Yu. Zorin ◽  
◽  
...  

1999 ◽  
Author(s):  
Charles K. Birdsall ◽  
J. P. Varboncoeur ◽  
P. J. Christensen

Sign in / Sign up

Export Citation Format

Share Document