Theoretical and numerical study of nonlinear acoustic absorbers for low frequency noise control

2021 ◽  
Vol 263 (1) ◽  
pp. 5600-5604
Author(s):  
Min Yang ◽  
Xianhui Li ◽  
Zenong Cai ◽  
Junjuan Zhao ◽  
Peng Zhang ◽  
...  

In this paper, the sound absorption characteristics of cubic nonlinear sound-absorbing structures are analyzed by theoretical and numerical methods. The slow flow equations of the system are derived by using complexification averaging method, and the nonlinear equations which describe the steady- state response are obtained. The resulting equations are verified by comparing the results which respectively obtained from complexification-averaging method and Runge-Kutta method. It is helpful to optimize the structural parameters and further improve the sound absorption performance to study the variation of the sound absorption performance of cubic nonlinear structure with its structural parameters.

2022 ◽  
Vol 2152 (1) ◽  
pp. 012037
Author(s):  
Qunli Chen ◽  
Wengeng Wu ◽  
Xu Gao ◽  
Yibiao Huang ◽  
Xiangwen Chen ◽  
...  

Abstract In view of the low-frequency noise problem in urban substation, the sound absorption (SA) properties of aluminum silicate fibers (ASF) with different materials, unit weight, plate thickness and cavity thickness were tested in this paper. It was found that the high-purity ASF with larger unit weight, plate thickness and cavity thickness had larger low-frequency SA coefficient, which provided technical support for the development of new low-frequency noise reduction materials for substation.


2020 ◽  
pp. 107754632098021
Author(s):  
Baozhu Cheng ◽  
Nansha Gao ◽  
Yunke Huang ◽  
Hong Hou

To enhance the low-frequency broadband sound absorption, we propose an absorber filled with porous material and establish a relative acoustic model. Based on the critical coupling condition, a Helmholtz absorber was designed to achieve perfect sound absorption at 172 Hz by the complex frequency plane method. Considering the weak adjustability and acoustic impedance of the Helmholtz absorber, we devised four absorber filled with porous material units that can achieve perfect sound absorption at discrete frequencies between 400 and 488 Hz with a thickness of only 51 mm. A composite absorber filled with porous material was designed by arranging four absorber filled with porous material units in a coplanar manner. The broadband perfect sound absorption of the composite absorber filled with porous material was subsequently verified by simulation and experiment. The thickness of the composite absorber filled with porous material is only 1/18 of the wavelength corresponding to the perfect absorption frequency, and it shows excellent subwavelength characteristics. The theoretical acoustic model of the composite absorber filled with porous material and the complex frequency plane method can achieve a more efficient design of broadband perfect sound absorbers. The composite absorber filled with porous material not only realizes low-frequency broadband perfect sound absorption but is also lightweight and easy to fabricate. This demonstrates the composite absorber filled with porous material structure has great potential for application in low to mid frequency noise control.


2013 ◽  
Vol 468 ◽  
pp. 134-140 ◽  
Author(s):  
Xia Zhang ◽  
Shu Ning Duan ◽  
Mei Gen Cao ◽  
Juan Mo ◽  
Yu Han Sun ◽  
...  

In allusion to the characteristic that transformer noise is mainly low-frequency noise, firstly the sound absorber is studied and analyzed on aspect of materials, sound absorption structure cavity thickness and punching rate etc in standing wave tube laboratory, secondly transformer substation low-frequency sound absorber is presented, and finally sound absorption properties of absorber is verified through random incidence Test. The analyses and study indicates that: compared with thin plate resonance absorber and micropunching sound absorber, the sound absorption band width of transformer substation low-frequency sound absorber has been improved under unchanged sound absorption effect and transformer low-frequency noise may be effectively absorbed.


Author(s):  
Boqiang Zhang ◽  
Penghui Chen ◽  
Huiyong Chen ◽  
Tianpei Feng ◽  
Chengxin Cai ◽  
...  

Because of the position of the motor and the excitation of the suspension system, a wheel-driven electric bus produces low-frequency noise, which is difficult to resolve through traditional sound absorption and noise reduction technology. Through an interior noise test of a wheel-driven electric bus, we found that the interior low-frequency noise had a considerable influence on the driver. In order to solve this problem, a locally resonant phononic crystal was used to meet the requirements of vibration and noise reduction for the wheel-driven electric bus. The intrinsic relationship between the band gap distribution of the locally resonant phononic crystal and the topology was established by training a neural network, so as to achieve the desired effect of the bandgap model on the basis of the input bandgap range. Upon an increase in the number of models, the prediction model error decreased gradually. This method could quickly obtain the structural parameters of the locally resonant phononic crystal with the expected band gap, which made it convenient to apply locally resonant phononic crystals to the vibration and noise reduction of wheel-driven electric buses and in other fields.


2021 ◽  
pp. 109963622199388
Author(s):  
Wei He ◽  
Xiangjun Peng ◽  
Fengxian Xin ◽  
Tian Jian Lu

A theoretical model is developed to study the superior sound absorption performance of ultralight mirco-perforated sandwich panels with double-layer hierarchical honeycomb core. Numerical simulations are performed to validate theoretical model predictions and explore physical mechanisms underlying the sound absorption. Systematic parametric study is implemented to investigate the influence of specific structural parameters on sound absorption. To maximize sound absorption, optimal structural parameters of the hierarchical sandwich are obtained using the method of simulated annealing. It is demonstrated that viscous dissipation of the air inside micro-perforations and around inlet/outlet regions dominates sound absorption. Compared to micro-perforated sandwich panels with regular honeycomb core, not only the proposed hierarchical construction has much improved load-bearing capacity, but also significantly enhanced sound absorption covers a wide range of frequency.


2021 ◽  
Vol 11 (18) ◽  
pp. 8678
Author(s):  
Byunghui Kim ◽  
Seokho Kim ◽  
Yejin Park ◽  
Marinus Mieremet ◽  
Heungguen Yang ◽  
...  

With the rapid increase in automobiles, the importance of reducing low-frequency noise is being emphasized for a comfortable urban environment. Helmholtz resonators are widely used to attenuate low-frequency noise over a narrow range. In this study, a slit-type soundproof panel is designed to achieve low-frequency noise attenuation in the range of 500 Hz to 1000 Hz with the characteristics of a Helmholtz resonator and the ability to pass air through the slits on the panel surface for reducing wind load. The basic dimension of the soundproof panel is determined using the classical formula and numerical analysis using a commercial program, COMSOL Multiphysics, for transmission loss prediction. From the numerical study, it is identified that the transmission loss performance is improved compared to the basic design according to the shape change and configuration method of the Helmholtz resonator. Although the correlation according to the shape change and configuration method cannot be derived, it is confirmed that it can be used as an effective method for deriving a soundproof panel design that satisfies the basic performance.


2016 ◽  
Vol 6 (01) ◽  
Author(s):  
Hanif Azimut

<p class="AbstractText">The influence of surface modification by using prism shaped profile on the sound absorption of absorber element was investigated experimentally. A prime number based configuration of the two types opened and closed type rism shaped profile inclusion was tested by using impedance tube according ASTM E1050 standard. The result shows that sound absorption at low frequency band below 200 Hz increased with the increasing of closed prism number. It is related to the coupling effect between the cavities of the absorber element and the prisms that changes reactance of the coupled structure. In the other side, a half wave resonance like effect occur on the use of opened prisms inclusion, which is increase the sound absorption performance at mid to high frequency range between 800 Hz to 1,25 kHz.  </p>


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 946 ◽  
Author(s):  
Xueliang Jiang ◽  
Zhijie Wang ◽  
Zhen Yang ◽  
Fuqing Zhang ◽  
Feng You ◽  
...  

Sound absorbing composites with stratified structures, including double-layer and sandwich structures, were prepared through the combination of nitrile butadiene rubber (NBR) and polyurethane foam (PUFM). The effects of the thickness ratio of layers, different stratified structures and the variety of fillers on the sound absorption performance of the NBR-PUFM composites and the sound absorption mechanism were studied. The results show that the NBR-PUFM composite with a sandwich structure and thickness ratio of 1:8:1 displays good sound absorption, which could be improved further by adding fillers. Because the airflow resistivity, resonance absorption, interface dissipation and interface reflection were combined organically in the sandwich structure, the composites show excellent low-frequency sound absorption performance. Moreover, the composite also has advantages in cost and functionalization aspects.


Sign in / Sign up

Export Citation Format

Share Document