scholarly journals Optimization Design on a High-performance Magnetic Shielding Barrel for Atomic Magnetometer Measurement Application

2022 ◽  
Vol 2160 (1) ◽  
pp. 012033
Author(s):  
Xiaoxuan Xie ◽  
Xiangyang Zhou

Abstract The ultra-high-precision measurement of the atomic magnetometer is largely restricted by the size of its working magnetic field. In order to reduce the residual magnetic field as much as possible, this article carried out the research on the methods to improve the shielding performance. Firstly, the axial shielding factor that limits the shielding performance of the magnetic shielding barrel was derived with various parameters including the radius, length, thickness, number of layers, distance between adjacent layers, etc. of the magnetic shielding barrel. Secondly, simulation was carried out to verify the correctness of the formula. Simulation shows that the shielding performance of the magnetic shielding barrel decreases with the size of magnetic shielding barrel increase. Besides, with the increase of the distance between two adjacent spacing layers, the shielding performance first increases rapidly and then gradually decreases, indicating that the optimal distance between adjacent layers is 9mm. Especially, the performance of the magnetic shielding barrel improves significantly as the layer thickness and number of layers increase. Experimental results show that the internal remanence of the three-layer magnetic shielding barrel is less than 1nT, and the available axial length of homogeneity range is greater than 200mm.

2013 ◽  
Vol 227 (1-3) ◽  
pp. 147-156 ◽  
Author(s):  
X. F Yang ◽  
◽  
T. Furukawa ◽  
T. Fujita ◽  
K. Imamura ◽  
...  

2021 ◽  
Vol 2143 (1) ◽  
pp. 012025
Author(s):  
Yu Song ◽  
Jingui Lu

Abstract The application of related tech represented by machine vision in mechanical design has gradually deepened, which has greatly ameliorated the automation of mechanical design. Based on this, this paper first analyses the principle and important composition of machine vision tech, then studies the utilization value of machine vision tech in mechanical design, and finally analyses the typical practical utilization of machine vision tech in workpiece detection, workpiece measurement and high-precision measurement in mechanical design.


1988 ◽  
Vol 24 (2) ◽  
pp. 946-949 ◽  
Author(s):  
P. Bertrand ◽  
C. Eveillard ◽  
B. Fernandez ◽  
A. Lemarie ◽  
J.F. Libin ◽  
...  

1991 ◽  
Vol 1 (12) ◽  
pp. 1669-1673 ◽  
Author(s):  
Hans Gerd Evertz ◽  
Martin Hasenbusch ◽  
Mihail Marcu ◽  
Klaus Pinn ◽  
Sorin Solomon

Radiocarbon ◽  
2020 ◽  
pp. 1-13
Author(s):  
Alexandra Fogtmann-Schulz ◽  
Sabrina G K Kudsk ◽  
Florian Adolphi ◽  
Christoffer Karoff ◽  
Mads F Knudsen ◽  
...  

ABSTRACT We here present a comparison of methods for the pretreatment of a batch of tree rings for high-precision measurement of radiocarbon at the Aarhus AMS Centre (AARAMS), Aarhus University, Denmark. The aim was to develop an efficient and high-throughput method able to pretreat ca. 50 samples at a time. We tested two methods for extracting α-cellulose from wood to find the most optimal for our use. One method used acetic acid, the other used HCl acid for the delignification. The testing was conducted on background 14C samples, in order to assess the effect of the different pretreatment methods on low-activity samples. Furthermore, the extracted wood and cellulose fractions were analyzed using Fourier transform infrared (FTIR) spectroscopy, which showed a successful extraction of α-cellulose from the samples. Cellulose samples were pretreated at AARAMS, and the graphitization and radiocarbon analysis of these samples were done at both AARAMS and the radiocarbon dating laboratory at Lund University to compare the graphitization and AMS machine performance. No significant offset was found between the two sets of measurements. Based on these tests, the pretreatment of tree rings for high-precision radiocarbon analysis at AARAMS will henceforth use HCI for the delignification.


Author(s):  
Yongxing Gong ◽  
Fengqiu Xu ◽  
Xianze Xu ◽  
Kaiyang Zhang

Precision machining fields require the worktable to have a large-scale multi-degree-of-freedom motion capability. In order to provide a more accurate magnetic model for the control strategy decoupling process and the size parameter optimization design process of the maglev rotary table. This paper proposes a new magnetic modeling method based on the Two-Dimensional Harmonic method. Different from the existing harmonic method, this method simultaneously considers the tangential and radial magnetic field changes of circumferential magnetic array. And it eliminates the edge effect of the magnetic flux density distribution in the radial aperiodic direction. The magnetic force and torque are solved by the Lorenz integral formula and the Gaussian quadrature method. In order to verify the accuracy of the TDH method, the boundary element software RadiaTM is used for simulation, and a prototype is made for measurement. The experimental results shown that this method reduced the maximum error of the radial edge magnetic field from 104.19% to 3.29%. And it improved the calculation accuracy of magnetic force and torque by 60.74% and 84.39% respectively. This method does not rely on special example, and is beneficial to cross-platform applications. It is more suitable for realizing the magnetic modeling of the maglev rotary table with both rotational motion and large-stroke translational motion.


1995 ◽  
Vol 583 ◽  
pp. 263-267 ◽  
Author(s):  
A. Lépine-Szily ◽  
J.M. Casandjian ◽  
W. Mittig ◽  
A.C.C. Villari ◽  
R. Lichtenthäler Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document