scholarly journals Nuclear masses, deformations and shell effects

2011 ◽  
Vol 322 ◽  
pp. 012017 ◽  
Author(s):  
Jorge G Hirsch ◽  
César A Barbero ◽  
Alejandro E Mariano
Keyword(s):  
2019 ◽  
Vol 28 (04) ◽  
pp. 1930005 ◽  
Author(s):  
Michael A. Famiano

Nuclear masses are the most fundamental of all nuclear properties, yet they can provide a wealth of knowledge, including information on astrophysical sites, constraints on existing theory, and fundamental symmetries. In nearly all applications, it is necessary to measure nuclear masses with very high precision. As mass measurements push to more short-lived and more massive nuclei, the practical constraints on mass measurement techniques become more exacting. Various techniques used to measure nuclear masses, including their advantages and disadvantages are described. Descriptions of some of the world facilities at which the nuclear mass measurements are performed are given, and brief summaries of planned facilities are presented. Future directions are mentioned, and conclusions are presented which provide a possible outlook and emphasis on upcoming plans for nuclear mass measurements at existing facilities, those under construction, and those being planned.


2020 ◽  
Vol 11 ◽  
pp. 680-687
Author(s):  
Atasi Chatterjee ◽  
Christoph Tegenkamp ◽  
Herbert Pfnür

Even though there have been many experimental attempts and theoretical approaches to understand the process of electromigration (EM), it has not been quantitatively understood for ultrathin structures and at grain boundaries. Nevertheless, we showed recently that it can be used reliably for the formation of single atomic point contacts after careful pre-structuring of the initial Ag nanostructures. The process of formation of nanocontacts by EM down to a single-atom point contact was investigated for ultrathin (5 nm) Ag structures at 100 K by measuring the conductance as a function of the time during EM. In this paper, we compare the process of thinning by EM of structures with constrictions below the average grain size of Ag layers (15 nm) with that of structures with much larger initial constrictions of around 150 nm having multiple grains at the centre constriction prior to the formation of a point contact. Even though clear morphological differences exist between both types of structures, quantized conductance plateaus showing the formation of single point contacts have been observed for both. Here we put emphasis on the thinning process by EM, just before a point contact is formed. To understand this thinning process, the semi-classical regime before the contact reaches the quantum regime was analyzed in detail. For this purpose, we used experimental conductance histograms in the range between 2G 0 and 15G 0 and their corresponding Fourier transforms (FTs). The FT analysis of the conductance histograms exhibits a clear preference for thinning along the [100] direction. Using well-established models, both atom-by-atom steps and ranges of stability, presumably caused by electronic shell effects, can be discriminated. Although the directional motion of atoms during EM leads to specific properties such as the instabilities mentioned, similarities to mechanically opened contacts with respect to cross-sectional stability were found.


2010 ◽  
Vol 19 (05n06) ◽  
pp. 1227-1235 ◽  
Author(s):  
V. A. DROZDOV ◽  
D. O. EREMENKO ◽  
O. V. FOTINA ◽  
S. Yu. PLATONOV ◽  
O. A. YUMINOV ◽  
...  

A large set of experimental observables for the 232 Th , 235 U (α, xnf ) reactions has been analyzed within the dynamic-statistical approach with allowance for the nuclear dissipation phenomenon, the double humped structure of fission barrier, and also the temperature damping of shell effects. The energy dependences of the lifetime effect (experimentally measured by the crystal blocking technique) along the corresponding data on the fission fragment angular anisotropy and also fission probabilities of U and Pu isotopes produced in the reactions were chosen for the analysis. Reliable information on the nuclear viscosity at the low excitation energies (< 30 MeV) was obtained.


2006 ◽  
Vol 37 (5) ◽  
pp. 16-21 ◽  
Author(s):  
Hendrik Schatz ◽  
Klaus Blaum
Keyword(s):  

2008 ◽  
Vol 5 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Hironobu Ito ◽  
Naoyuki Yamamoto

A large skull is disadvantageous to animals that move quickly in three-dimensional space, such as fishes and birds in water or air. A cerebral neocortex with a six-layered sheet has not evolved, most likely due to the limited cranial space. Instead of the laminar cortex, telencephalic nuclear masses seem to have evolved as the pallium in teleost fishes. We consider that the nuclear masses contain rather simple neural circuits sharing a skeleton of simple circuits in the mammalian cortex, which have been elaborated by additional circuits in mammals. Such basic similarities at the connectional level shared by nuclear and cortical pallium might underlie similar or equivalent functions.


Sign in / Sign up

Export Citation Format

Share Document