average grain size
Recently Published Documents


TOTAL DOCUMENTS

1836
(FIVE YEARS 514)

H-INDEX

35
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 600
Author(s):  
Lili Zhang ◽  
Yan Song ◽  
Linjie Yang ◽  
Jiuzhou Zhao ◽  
Jie He ◽  
...  

Synergistic effect of TiB2 (in form of Al-5Ti-1B) and La on grain refining results in Al-2Cu alloy was investigated. α-Al grains are significantly refined by Al-5Ti-1B. When trace La is added to the melt, further refinement is exhibited. Average grain size and nucleation undercooling of α-Al reduce first and then almost remain unchanged with La addition. Satisfactory grain refining result achieves when La addition level reaches 600 ppm. When more than 600 ppm La is added to the melt, La-rich particles form and the effect of solute La left in matrix on the microstructure almost no longer changes. Theoretical calculation results demonstrate that solute La segregates to Al melt/TiB2 particles interface along with Ti and Cu prior to α-Al nucleation and the synergistic effect of La and TiB2 particles on grain refinement mainly attributes to the enhancement in the potency of TiB2 particles to heterogeneously nucleate α-Al by trace La addition.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Aliah Nursyahirah Kamarudin ◽  
Mohd Mustafa Awang Kechik ◽  
Siti Nabilah Abdullah ◽  
Hussein Baqiah ◽  
Soo Kien Chen ◽  
...  

The development of high-temperature superconductor (HTS) YBa2Cu3O7~δ (Y123) bulks in industrial applications were established years ago. It is one of the developments that currently attracts great attention especially in transportation, superconductor cables and wires. This study is focused on the preparation of the Y123 bulk superconductors by the thermal treatment method due to the promising ways to develop high-quality Y123 superconductors with its simplicity, low cost, and relatively low reaction temperature used during the process. Y123 were added with graphene nanoparticles (x = (0.0–1.0) wt.%). Samples were then characterized by X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and alternating current susceptibility (ACS). It was found that Y123 confirmed that the majority of phases in all the XRD patterns was the orthorhombic crystal structure and the Pmmm space group with secondary phases belonged to Y2Ba1Cu1O5 (Y211). The highest Tc obtained when graphene nanoparticles were added in the Y123 sample was x = 1.0 wt.%, followed by x = 0.5 wt.% with 92.64 and 92.59 K, respectively. From the microstructure analysis, the average grain size significantly decreased to 4.754 µm at x = 0.5 wt.%. The addition of graphene nanoparticles had disturbed the grain growth of Y123, affecting the superconducting properties of the samples. On the other hand, the intergranular critical current density, Jcm, was found to increase with graphene nanoparticle addition and had the highest value at x = 1.0 wt.%, indicating that graphene nanoparticles acted as pinning centers in the Y123 matrix.


2022 ◽  
Author(s):  
Abideen Adejuwon Ibiyemi ◽  
Yusuf taofeek Gbadebo ◽  
Olusayo Olubosede ◽  
Akinrinola Olusola ◽  
Hamzat Adebayo Akande

Abstract Cadmium nickel (Cd-Ni) ferrite samples have been successfully synthesized via chemical co-precipitation technique. The structural analysis revealed the formation of FCC framework and Fe-phase in a trivalent state. The crystallite size is decreased with increasing Cd2+ ion composition whereas the lattice constant is increased. SEM was used to obtain the surface morphology and average grain size of the microstructure. The FTIR shows the formation of metal oxide, hydroxyl and carboxylic groups. EDX revealed the formation of Ni2+, Cd2+, Fe3+, and O2- ions in proper stoichiometric composition. Large optical losses were revealed by Cd2+ poor-NiFe2O4 samples whereas Cd2+ rich-CdxNi1-xFe2O4 samples revealed low optical losses and showed enhanced photoconductivity and photoelectric effect. Result from optical analysis showed that Cd2+ rich-CdxNi1-xFe2O4 nanoparticles can be used as infrared (IR) detector, ultraviolet (UV) filter and in optoelectronics device applications. VSM measurement showed an increase in saturation magnetization and decrease in coercivity as Cd2+ ion content is increased. The remanance magnetization and magnetic anisotropy were also examined. Photoluminescence (PL) spectroscopy examined the nature of the light emission of the samples at the excitation wavelength 380 nm and emission of series of colours such as red, green, yellow, orange and violet light at different wavelengths were found.


2022 ◽  
Vol 327 ◽  
pp. 3-10
Author(s):  
Shu Sen Wu ◽  
Xiao Gang Fang ◽  
Shu Lin Lü ◽  
Long Fei Liu ◽  
Wei Guo

There is little datum related to microstructure and properties of Mg alloys squeeze-casted with pressure over 200 MPa. In this study, the microstructure and properties of Mg-6Zn-1.4Y (ZW61) alloy solidified under 100MPa to 800MPa were investigated. The results show that a remarkable microstructure refinement and porosity reduction can be reached through solidification under high pressure. The average grain size and the volume fraction of second phase, i.e. quasicrystal I-phase, decrease continuously with the increase of applied pressure. The tensile properties, especially elongation, are obvious enhanced because of the microstructure refinement and castings densification under high pressure. The ultimate tensile strength and elongation of ZW61 alloy in as-cast state are 243 MPa and 18.7% when the applied pressure is 800 MPa, which are increased by 35% and 118% respectively, compared with that of the gravity castings.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 206
Author(s):  
Honghwi Park ◽  
Junyeong Lee ◽  
Chang-Ju Lee ◽  
Jaewoon Kang ◽  
Jiyeong Yun ◽  
...  

The electrical properties of polycrystalline graphene grown by chemical vapor deposition (CVD) are determined by grain-related parameters—average grain size, single-crystalline grain sheet resistance, and grain boundary (GB) resistivity. However, extracting these parameters still remains challenging because of the difficulty in observing graphene GBs and decoupling the grain sheet resistance and GB resistivity. In this work, we developed an electrical characterization method that can extract the average grain size, single-crystalline grain sheet resistance, and GB resistivity simultaneously. We observed that the material property, graphene sheet resistance, could depend on the device dimension and developed an analytical resistance model based on the cumulative distribution function of the gamma distribution, explaining the effect of the GB density and distribution in the graphene channel. We applied this model to CVD-grown monolayer graphene by characterizing transmission-line model patterns and simultaneously extracted the average grain size (~5.95 μm), single-crystalline grain sheet resistance (~321 Ω/sq), and GB resistivity (~18.16 kΩ-μm) of the CVD-graphene layer. The extracted values agreed well with those obtained from scanning electron microscopy images of ultraviolet/ozone-treated GBs and the electrical characterization of graphene devices with sub-micrometer channel lengths.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Evgeniy Rumyantsev ◽  
Varvara Rumyantseva ◽  
Viktoriya Konovalova

The article presents a method for obtaining white phosphate coatings on steel by cold method. The deposition of protective phosphate coatings was carried out from solutions based on the preparation “Majef”, consisting of manganese and iron phosphates. To obtain phosphate films of white color, it is proposed to introduce zinc and calcium nitrates into phosphating solutions at the rate of 25–30 g/L. The surface of phosphate coatings was studied using the SolverP47-PRO atomic force microscope images, and the average grain size was determined. The structural and phase composition of phosphate coatings was been studied using X-ray diffraction analysis. The protective properties of phosphate coatings were estimated by corrosion rate indicators calculated from corrosion diagrams. Fine-crystalline uniform coatings were obtained from modified phosphating solutions at room temperature on steel. The white color of phosphate coatings is due to the increased content of phosphophyllite, hopeite, and parascholzite in their structural and phase composition. By applying protective phosphate coatings of white color on a steel product, corrosion can be slowed down by 4–4.5 times. However, white phosphate coatings are inferior in protective properties to unpainted coatings. The index of change in the mass of samples with white phosphate coatings because of corrosion is 0.371–0.41 g/(m2·h), and with unpainted coatings is 0.128 g/(m2·h).


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 39
Author(s):  
Varuzhan Sarkisyan ◽  
Roman Sobolev ◽  
Yuliya Frolova ◽  
Irina Vorobiova ◽  
Alla Kochetkova

Beeswax and beeswax hydrocarbon-based oleogels were studied to evaluate the quantitative relationship between their yield strength and crystal size distribution. With this aim, oleogels were prepared using four different cooling regimes to obtain different crystal size distributions. The microstructure was evaluated by polarized light microscopy. The yield strength is measured by the cone penetration test. Oleogels were characterized by average grain size, microstructure entropy, grain boundary energy per unit volume, and microstructure temperature. We have provided the theoretical basis for interpreting the microstructure and evaluating the microstructure-based hardening of oleogels. It is shown that the microstructure entropy might be used to predict the yield strength of oleogels by the Hall-Petch relationship.


2022 ◽  
Vol 1048 ◽  
pp. 121-129
Author(s):  
Samit Karmakar ◽  
Soumik Kumar Kundu ◽  
Aditya Mukherjee ◽  
Sujit Kumar Bandyopadhyay ◽  
Satyaranjan Bhattacharyya ◽  
...  

Microstructural analysis of commercially available cold-rolled polycrystalline copper foil, etched and annealed in an in-house developed Electron Cyclotron Resonance (ECR) Plasma Enhanced Chemical Vapour Deposition (PE-CVD) reactor, have been carried out using x-ray diffraction (XRD) studies. The annealing experiments were carried out under a vacuum environment, keeping the working pressure of the reactor at 50×10-3 mbar, for three different time spans of 30 mins, 45 mins and 1 hour at 823 K (550 °C) and 923 K (650 °C) respectively in presence of hydrogen plasma. The XRD studies reveal the significance of annealing time at two different temperatures for the determination of physical and microstructural parameters such as the average grain size and micro-strain in copper lattice by Williamson-Hall (W-H) method.


2022 ◽  
Vol 1048 ◽  
pp. 189-197
Author(s):  
Tippasani Srinivasa Reddy ◽  
M.C. Santhosh Kumar

In this study report the structural and optical properties of Copper Tin Sulfide (Cu2SnS3) thin films on indium tin oxide (ITO) substrate using co-evaporation technique. High purity of copper, tin and sulfur were taken as source materials to deposit Cu2SnS3 (CTS) thin films at different substrate temperatures (200-350 °C). Further, the effect of different substrate temperature on the crystallographic, morphological and optical properties of CTS thin films was investigated. The deposited CTS thin films shows tetragonal phase with preferential orientation along (112) plane confirmed by X-ray diffraction. Micro-Raman studies reveled the formation of CTS thin films. The surface morphology, average grain size and rms values of the deposited films are examined by Scanning electron spectroscopy (SEM) and Atomic Force Microscopy (AFM). The Energy dispersive spectroscopy (EDS) shows the presence of copper, tin and sulfur with a nearly stoichiometric ratio. The optical band gap (1.76-1.63 eV) and absorption coefficient (~105 cm-1) of the films was calculated by using UV-Vis-NIR spectroscopy. The values of refractive index, extinction coefficient and permittivity of the deposited films were calculated from the optical transmittance data.


Author(s):  
Pauli Lehto ◽  
Heikki Remes

AbstractMicrostructural characterisation of engineering materials is required for understanding the relationships between microstructure and mechanical properties. Conventionally grain size is measured from grain boundary maps obtained using optical or electron microscopy. This paper implements EBSD-based linear intercept measurement of spatial grain size variation for ferritic steel weld metals, making analysis flexible and robust. While grain size has been shown to correlate with the strength of the material according to the Hall–Petch relationship, similar grain sizes in weld metals with different phase volume fractions can have significantly different mechanical properties. Furthermore, the solidification of the weld pool induces the formation of grain sub-structures that can alter mechanical properties. The recently developed domain misorientation approach is used in this study to provide a more comprehensive characterisation of the grain sub-structures for ferritic steel weld metals. The studied weld metals consist of varying mixtures of primary ferrite, acicular ferrite, and bainite/martensite, with large differences observed in hardness, grain size, grain morphology, and dislocation cell size. For the studied weld metals, the average dislocation cell size varied between 0.68 and 1.41 µm, with bainitic/martensitic weld metals showing the smallest sub-structures and primary ferrite the largest. In contrast, the volume-weighted average grain size was largest for the bainitic/martensitic weld metal. Results indicate that a Hall–Petch-type relationship exists between hardness and average dislocation cell size and that it partially corrects the significantly different grain size—hardness relationship observed for ferritic and bainitic/martensitic weld metals. The methods and datasets are provided as open access.


Sign in / Sign up

Export Citation Format

Share Document