scholarly journals Weak periodic solutions of xẍ + 1 = 0 and the Harmonic Balance Method

2017 ◽  
Vol 811 ◽  
pp. 012003
Author(s):  
J D García-Saldaña ◽  
A Gasull
Author(s):  
Frederic Schreyer ◽  
Remco Leine

Several numerical approaches have been developed to capture nonlinear effects of dynamical systems. In this paper we present a mixed shooting-harmonic balance method to solve large mechanical systems with local nonlinearities efficiently. The Harmonic Balance Method as well as the shooting method have both their pros and cons. The proposed mixed shooting-HBM approach combines the efficiency of HBM and the accuracy of the shooting method and has therefore advantages of both.


2019 ◽  
Vol 29 (03) ◽  
pp. 1930007 ◽  
Author(s):  
Rafal Rusinek ◽  
Joanna Rekas ◽  
Krzysztof Kecik

This paper focuses on periodic solutions for a one-degree-of-freedom oscillator with a spring made of shape memory alloy (SMA). However, when periodic solutions are unstable, irregular motion is identified numerically. The shape memory spring is described by a polynomial characteristic in this model. The harmonic balance method (HBM) is employed to find periodic solutions near the primary resonance. The solutions are confronted with results obtained by the multiple time scales method and numerical simulations. Finally, the effect of system parameters and temperature on the system dynamics is discussed.


2017 ◽  
Vol 394 ◽  
pp. 434-450 ◽  
Author(s):  
Louis Guillot ◽  
Pierre Vigué ◽  
Christophe Vergez ◽  
Bruno Cochelin

Author(s):  
Alexander. N Pchelintsev ◽  
Andrey. A Polunovskiy ◽  
Irina. Y Yukhanova

We consider the harmonic balance method for finding approximate periodic solutions of the Lorenz system. When developing software that implements the described method, the math package Maxima was chosen. The drawbacks of symbolic calculations for obtaining a system of nonlinear algebraic equations with respect to the cyclic frequency, free terms and amplitudes of the harmonics, that make up the desired solution, are shown. To speed up the calculations, this system was obtained in a general form for the first time. The results of the computational experiment are given: the coefficients of trigonometric polynomials approximating the found periodic solution, the initial condition, and the cycle period. The results obtained were verified using a high-precision method of numerical integration based on the power series method and described earlier in the articles of the authors.


Author(s):  
Dennis O’Connor ◽  
Albert C. J. Luo

In this paper, periodic motions in the Mathieu-Duffing oscillator are analytically predicted through the harmonic balance method. The approximate, analytical solutions of periodic motions are achieved, and the corresponding stability analyses of the stable and unstable periodic solutions are completed. Numerical simulations are provided for a complete picture of coexisting periodic motions.


Sign in / Sign up

Export Citation Format

Share Document