scholarly journals Energy release rate analysis on the interface cracks of enamel-cement-bracket fracture using virtual crack closure technique

2017 ◽  
Vol 908 ◽  
pp. 012016
Author(s):  
S F Samshuri ◽  
R Daud ◽  
M A Rojan ◽  
F Mat ◽  
K S Basaruddin ◽  
...  
2018 ◽  
Vol 46 (3) ◽  
pp. 130-152
Author(s):  
Dennis S. Kelliher

ABSTRACT When performing predictive durability analyses on tires using finite element methods, it is generally recognized that energy release rate (ERR) is the best measure by which to characterize the fatigue behavior of rubber. By addressing actual cracks in a simulation geometry, ERR provides a more appropriate durability criterion than the strain energy density (SED) of geometries without cracks. If determined as a function of crack length and loading history, and augmented with material crack growth properties, ERR allows for a quantitative prediction of fatigue life. Complications arise, however, from extra steps required to implement the calculation of ERR within the analysis process. This article presents an overview and some details of a method to perform such analyses. The method involves a preprocessing step that automates the creation of a ribbon crack within an axisymmetric-geometry finite element model at a predetermined location. After inflating and expanding to three dimensions to fully load the tire against a surface, full ribbon sections of the crack are then incrementally closed through multiple solution steps, finally achieving complete closure. A postprocessing step is developed to determine ERR as a function of crack length from this enforced crack closure technique. This includes an innovative approach to calculating ERR as the crack length approaches zero.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Shuaishuai Hu ◽  
Jiansheng Liu ◽  
Junlin Li

The behavior of a fine-grained piezoelectric coating/substrate with multiple Griffith interface cracks under electromechanical loads is investigated. In this work, double coupled singular integral equations are proposed to solve the fracture problems. Both the singular integral equation and single-valued conditions are simplified into an algebraic equation and solved by numerical calculation. Thereby, the intensity factors of electric displacement and stress obtained are used to obtain the expression of the energy release rate. Furthermore, numerical results of the energy release rate with material parameters are demonstrated. Based on the obtained results, it could be concluded that the energy release rate is closely related to the size of the interface cracks and the mechanical-electrical loading. For a bimaterial structure, the fine-grained piezoelectric structure exhibited better material performance compared to the large one.


2020 ◽  
Vol 54 (21) ◽  
pp. 3021-3034
Author(s):  
Luca Di Stasio ◽  
Janis Varna ◽  
Zoubir Ayadi

Models of Representative Volume Elements of cross-ply laminates with different geometric configurations and damage states are studied. Debond growth is characterized by the estimation of the Mode I and Mode II Energy Release Rate using the Virtual Crack Closure Technique. It is found that the presence of the [Formula: see text] interface and the thickness of the [Formula: see text] layer has no effect, apart from laminates with ultra-thin [Formula: see text] plies where it is however modest. The present analysis supports the claim that debond growth is not affected by the ply-thickness effect.


2004 ◽  
Vol 18 (11) ◽  
pp. 1996-2008 ◽  
Author(s):  
Yoon-Suk Chang ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Genki Yagawa

2019 ◽  
Author(s):  
Luca Di Stasio ◽  
Janis Varna ◽  
Zoubir Ayadi

Models of Representative Volume Elements (RVEs) of cross-ply laminates with different geometric configurations and damage states are studied. Debond growth is characterized by the estimation of the Mode I and Mode II Energy Release Rate (ERR) using the Virtual Crack Closure Technique (VCCT). It is found that the presence of the 0° /90° interface and the thickness of the 0° layer have no effect, apart from laminates with ultra-thin 90° plies where it is however modest. The present analysis supports the claim that debond growth is not affected by the ply-thickness effect.


Sign in / Sign up

Export Citation Format

Share Document