scholarly journals Magnetotransport of Monolayer Graphene with Inert Gas Adsorption in the Quantum Hall Regime

2018 ◽  
Vol 969 ◽  
pp. 012130 ◽  
Author(s):  
A Fukuda ◽  
D Terasawa ◽  
A Fujimoto ◽  
Y Kanai ◽  
K Matsumoto
2009 ◽  
Vol 23 (12n13) ◽  
pp. 2618-2627 ◽  
Author(s):  
ANA L. C. PEREIRA ◽  
PETER A. SCHULZ

We investigate the effects of vacancies, disorder and sublattice polarization on the electronic properties of a monolayer graphene in the quantum Hall regime. Energy spectra as a function of magnetic field and the localization properties of the states within the graphene Landau levels (LLs) are calculated through a tight-binding model. We first discuss our results considering vacancies in the lattice, where we show that vacancies introduce extra levels (or well-defined bands) between consecutive LLs. An striking consequence here is that extra Hall resistance plateaus are expected to emerge when an organized vacancy superlattice is considered. Secondly, we discuss the anomalous localization properties we have found for the lowest LL, where an increasing disorder is shown to enhance the wave functions delocalization (instead of inducing localization). This unexpected effect is shown to be directly related to the way disorder increasingly destroys the sublattice (valley) polarization of the states in the lowest LL. The reason why this anomalous disorder effect occurs only for the zero-energy LL is that, in absence of disorder, only for this level all the states are sublattice polarized, i.e., their wave functions have amplitudes in only one of the sublattices.


2021 ◽  
Author(s):  
Andrew T. Pierce ◽  
Yonglong Xie ◽  
Seung Hwan Lee ◽  
Patrick R. Forrester ◽  
Di S. Wei ◽  
...  

AbstractSymmetry-broken electronic phases support neutral collective excitations. For example, monolayer graphene in the quantum Hall regime hosts a nearly ideal ferromagnetic phase at specific filling factors that spontaneously breaks the spin-rotation symmetry1–3. This ferromagnet has been shown to support spin-wave excitations known as magnons that can be electrically generated and detected4,5. Although long-distance magnon propagation has been demonstrated via transport measurements, important thermodynamic properties of such magnon populations—including the magnon chemical potential and density—have not been measured. Here we present local measurements of electron compressibility under the influence of magnons, which reveal a reduction in the gap associated with the ν = 1 quantum Hall state by up to 20%. Combining these measurements with the estimates of temperature, our analysis reveals that the injected magnons bind to electrons and holes to form skyrmions, and it enables the extraction of free magnon density, magnon chemical potential and average skyrmion spin. Our methods provide a means of probing the thermodynamic properties of charge-neutral excitations that are applicable to other symmetry-broken electronic phases.


Nature ◽  
2019 ◽  
Vol 572 (7767) ◽  
pp. 91-94 ◽  
Author(s):  
Patrick Knüppel ◽  
Sylvain Ravets ◽  
Martin Kroner ◽  
Stefan Fält ◽  
Werner Wegscheider ◽  
...  

1999 ◽  
Vol 60 (4) ◽  
pp. 2561-2570 ◽  
Author(s):  
Rolf R. Gerhardts ◽  
Johannes Groß

2009 ◽  
Vol 23 (12n13) ◽  
pp. 2927-2932
Author(s):  
E. A. ASANO

We study properties of the simplest type of electron interferometer, the Mach-Zehnder Interferometer (MZI) in the Integer Quantum Hall (IQH) regime. In this work, in order to analyse the novel experimental results reported by I. Neder et al. [Phys. Rev. Lett.96, 016804 (2006)] which makes questionable the validity of Landauer-Buttiker formalism in the IQH regime, we have derived expressions for tunneling currents through the electronic MZI system whithin the model of quantum dissipation induced by an environment. In this model the MZI system is coupled to a dissipative environment, where the dissipation is introduced by coupling the MZI system to a frequency-independent Ohmic impedance Z(ω) = R.


1999 ◽  
Vol 86 (7) ◽  
pp. 4043-4045 ◽  
Author(s):  
C. Livermore ◽  
D. S. Duncan ◽  
R. M. Westervelt ◽  
K. D. Maranowski ◽  
A. C. Gossard

Sign in / Sign up

Export Citation Format

Share Document