Differential X-ray phase contrast tomography of Alzheimer plaques in mouse models: perspectives for drug development and clinical imaging techniques

2013 ◽  
Vol 8 (05) ◽  
pp. C05005-C05005
Author(s):  
B R Pinzer ◽  
M Cacquevel ◽  
P Modregger ◽  
T Thuering ◽  
M Stampanoni
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Shengkun Yao ◽  
Yunbing Zong ◽  
Jiadong Fan ◽  
Zhibin Sun ◽  
Huaidong Jiang

X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.


Author(s):  
Inna Bukreeva ◽  
Graziano Ranocchia ◽  
Vincenzo Formoso ◽  
Michele Alessandrelli ◽  
Michela Fratini ◽  
...  

ACS Nano ◽  
2016 ◽  
Vol 10 (8) ◽  
pp. 7990-7997 ◽  
Author(s):  
Fu Sun ◽  
Lukas Zielke ◽  
Henning Markötter ◽  
André Hilger ◽  
Dong Zhou ◽  
...  

2018 ◽  
Vol 115 (27) ◽  
pp. 6940-6945 ◽  
Author(s):  
Mareike Töpperwien ◽  
Franziska van der Meer ◽  
Christine Stadelmann ◽  
Tim Salditt

To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal “packing,” we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites.


2020 ◽  
Vol 55 (10) ◽  
pp. 1261-1267
Author(s):  
Niccolò Peruzzi ◽  
Béla Veress ◽  
Lars B. Dahlin ◽  
Tim Salditt ◽  
Mariam Andersson ◽  
...  

2019 ◽  
Vol 82 (7) ◽  
pp. 953-960
Author(s):  
Hong‐Xia Yin ◽  
Peng Zhang ◽  
Zheng Wang ◽  
Yun‐Fu Liu ◽  
Ying Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document