Supersymmetric path integral for the Dirac oscillator in a uniform electric field

2020 ◽  
Vol 53 (26) ◽  
pp. 265401
Author(s):  
Hassene Bada ◽  
Mekki Aouachria
2019 ◽  
Vol 34 (30) ◽  
pp. 1950246
Author(s):  
Hassene Bada ◽  
Mekki Aouachria

In this paper, the propagator of a two-dimensional Dirac oscillator in the presence of a uniform electric field is derived by using the path integral technique. The fact that the globally named approach is used in this work redirects, beforehand, our search for the propagator of the Dirac equation to that of the propagator of its quadratic form. The internal motions relative to the spin are represented by two fermionic oscillators, which are described by Grassmannian variables, according to Schwinger’s fermionic model. Once the integration over the anticommuting variables (Grassmannian variables) is accomplished, the problem becomes the one of finding a non-relativistic propagator with only bosonic variables. The energy spectrum of the electron and the corresponding eigenspinors are also obtained in this work.


1997 ◽  
Vol 117 (11) ◽  
pp. 1109-1114
Author(s):  
Yoshiyuki Suda ◽  
Kenji Mutoh ◽  
Yosuke Sakai ◽  
Kiyotaka Matsuura ◽  
Norio Homma

2008 ◽  
Vol 128 (12) ◽  
pp. 1445-1451
Author(s):  
Takanori Yasuoka ◽  
Tomohiro Kato ◽  
Katsumi Kato ◽  
Hitoshi Okubo

2021 ◽  
Vol 28 (2) ◽  
pp. 333-340
Author(s):  
S. Diaham ◽  
Z. Valdez-Nava ◽  
L. Leveque ◽  
T. T. Le ◽  
L. Laudebat ◽  
...  

2021 ◽  
Vol 28 (2) ◽  
pp. 341-347
Author(s):  
S. Diaham ◽  
Z. Valdez-Nava ◽  
T. T. Le ◽  
L. Leveque ◽  
L. Laudebat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document