scholarly journals Geochemical characteristics of Lower Jurassic source rocks in the Zhongkouzi Basin

Author(s):  
Haiqing Niu ◽  
Xiaofeng Han ◽  
Jianshe Wei ◽  
Huiyuan Zhang ◽  
Baowen Wang
China Geology ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 162-163
Author(s):  
Cai-qin Bi ◽  
◽  
Zhong-kai Lin ◽  
Ya Tian ◽  
Zhi-li Du ◽  
...  
Keyword(s):  

2021 ◽  
pp. M55-2018-39 ◽  
Author(s):  
David H. Elliot ◽  
Thomas. H. Fleming

AbstractThe Lower Jurassic Ferrar Large Igneous Province consists predominantly of intrusive rocks, which crop out over a distance of 3500 km. In comparison, extrusive rocks are more restricted geographically. Geochemically, the province is divided into the Mount Fazio Chemical Type, forming more than 99% of the exposed province, and the Scarab Peak Chemical Type, which in the Ross Sea sector is restricted to the uppermost lava. The former exhibits a range of compositions (SiO2 = 52–59%; MgO = 9.2–2.6%; Zr = 60–175 ppm; Sri = 0.7081–0.7138; εNd = −6.0 to −3.8), whereas the latter has a restricted composition (SiO2 = c. 58%; MgO = c. 2.3%; Zr = c. 230 ppm; Sri = 0.7090–0.7097; εNd = −4.4 to −4.1). Both chemical types are characterized by enriched initial isotope compositions of neodymium and strontium, low abundances of high field strength elements, and crust-like trace element patterns. The most basic rocks, olivine-bearing dolerites, indicate that these geochemical characteristics were inherited from a mantle source modified by subduction processes, possibly the incorporation of sediment. In one model, magmas were derived from a linear source having multiple sites of generation each of which evolved to yield, in sum, the province-wide coherent geochemistry. The preferred interpretation is that the remarkably coherent geochemistry and short duration of emplacement demonstrate derivation from a single source inferred to have been located in the proto-Weddell Sea region. The spatial variation in geochemical characteristics of the lavas suggests distinct magma batches erupted at the surface, whereas no clear geographical pattern is evident for intrusive rocks.


1982 ◽  
Vol 22 (1) ◽  
pp. 213 ◽  
Author(s):  
B. M. Thomas ◽  
D. G. Osborne ◽  
A. J. Wright

Ever since the early discoveries at Cabawin (1960) and Moonie (1961), the origin of oil and gas in the Surat/Bowen Basin has been a subject of speculation. Hydrocarbons have been found in reservoirs ranging in age from Permian to Early Jurassic; even fractured pre-Permian 'basement' rocks have occasionally recorded shows.Recent geochemical studies have identified rich source rocks within the Jurassic, Triassic and Permian sequences. The Middle Jurassic Walloon Coal Measures are thermally immature throughout the Surat Basin and are unlikely to have generated significant amounts of hydrocarbons. Lower Jurassic Evergreen Formation source rocks have reached 'nominal early maturity' (VR = 0.6) in parts of the basin. The Middle Triassic Moolayember Formation lies within the oil generation zone in the northern Taroom Trough. However, no oil has yet been confidently correlated with either a Jurassic or a Triassic source. On geochemical and geological grounds it is likely that most, if not all, of the hydrocarbons discovered to date were generated from Permian source rocks.The probability of finding gas as well as oil in Permian, Triassic or Jurassic reservoirs increases from south to north, in accord with organic maturity trends in the Permian of the Taroom Trough. On the narrow thrust-bounded eastern flank, vertical migration has occurred, resulting in oilfields at Moonie and Bennett. In contrast, extensive lateral migration of hydrocarbons across the gentle western flank of the basin is indicated by numerous small oil and gas fields on the Roma Shelf and Wunger Ridge.


Sign in / Sign up

Export Citation Format

Share Document