large igneous province
Recently Published Documents


TOTAL DOCUMENTS

815
(FIVE YEARS 328)

H-INDEX

70
(FIVE YEARS 7)

Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Richard Spikings ◽  
Roelant Van der Lelij

Isotopic and geochemical data delineate passive margin, rift and active margin cycles in northwestern South America since ~623 Ma, spanning from the Iapetus Wilson Cycle. Ultramafic and mafic rocks record rifting associated with the formation of the Iapetus Ocean during 623–531 Ma, while the initiation of subduction of the Iapetus and Rheic oceans is recorded by continental arc plutons that formed during 499–414 Ma, with alternating compressive and extensional stages. Muscovite 40Ar/39Ar dates suggest there may have been a phase of Carboniferous metamorphism, although this remains tentative. A Passive margin was modified by active margin magmatism that started at ~294 Ma and culminated with collisional tectonics that signaled the final stages of the amalgamation of western Pangaea. Early Pangaea fragmentation included back-arc rifting during 245–216 Ma, leading to a Pacific active margin that spanned from 213–115 Ma. Trench retreat accelerated during 144–115 Ma, forming a highly attenuated continental margin prior to the collision of the Caribbean Large Igneous Province at ~75 Ma.


2021 ◽  
Author(s):  
◽  
Rachel Barrett

<p>Geophysical data show that the West Wishbone Ridge, offshore of eastern New Zealand, is best described as having previously been a crustal transform fault, which first propagated along the eastern margin of the Hikurangi Plateau as subduction along the New Zealand sector of the Gondwana margin began to slow and reorientate between 105 and 101 Ma. Variation in the strike of the West Wishbone Ridge has resulted in contrasting compressional and extensional zones along the ridge. These regimes reflect the direction of strike offset from the direction of fault propagation, and constrain the sense of motion along the West Wishbone Ridge as having been dextral.  We find evidence that Cretaceous subduction along the Chatham Rise margin extended east of the margin offset at 174°W that marks the edge of Hikurangi Plateau subduction beneath the margin. Rotation of the Chatham Rise margin between 105 and 101 Ma was accommodated by westward broadening of the extensional zone of deformation associated with the West Wishbone Ridge near its intersection with the Chatham Rise. The amount of offset along the ridge indicates that significant transform motion along the West Wishbone Ridge south of ~40.5°S ceased ca. 101 Ma, coeval with the cessation of spreading of the Osbourn Trough, and of subduction of the Hikurangi Plateau.  Additionally, we find anomalously thick oceanic crust adjacent to the WWR and north of the Hikurangi Plateau (>12 km thick). This is attributed to the proximity of this crust to the Hikurangi Plateau Large Igneous Province.  The results of this study are based on seismic reflection and magnetic data recently collected during the 2016 R/V Sonne survey SO-246, as well as previously collected seismic reflection profiles and satellite gravity data.</p>


Sign in / Sign up

Export Citation Format

Share Document