scholarly journals Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

Author(s):  
Jui-Hsiang Kao ◽  
Po-Yuan Tseng
2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Yichen Jiang ◽  
Peidong Zhao ◽  
Li Zou ◽  
Zhi Zong ◽  
Kun Wang

Abstract The offshore wind industry is undergoing a rapid development due to its advantage over the onshore wind farm. The vertical axis wind turbine (VAWT) is deemed to be potential in offshore wind energy utilization. A design of the offshore vertical axis wind turbine with a deflector is proposed and studied in this paper. Two-dimensional computational fluid dynamics (CFD) simulation is employed to investigate the aerodynamic performance of wind turbine. An effective method of obtaining the blade’s angle of attack (AoA) is introduced in CFD simulation to help analyze the blade aerodynamic torque variation. The numerical simulations are validated against the measured torque and wake velocity, and the results show a good agreement with the experiment. It is found that the blade instantaneous torque is correlated with the local AoA. Among the three deflector configurations, the front deflector leads to favorable local flow for the blade, which is responsible for the improved performance.


Author(s):  
Tri Admono ◽  
Yoyon Ahmudiarto ◽  
Amma Muliya Romadoni ◽  
Iman Abdurahman ◽  
Agus Salim ◽  
...  

Strut is used in vertical axis wind turbine (VAWT) to restraint the framework. In this study, struts are analyzed to show the pressure losses in VAWT. ANSYS computational fluid dynamics (CFD) software is used to investigate triangle strut in VAWT. This study aims to show a CFD simulation of struts, which affects the aerodynamic of VAWT. In CFD software, the aerodynamic of VAWT can be analyzed in terms of pressure losses in the struts. The simulation method starts by making a struts model, then meshing and setting up ANSYS's boundary conditions. The last iteration runs in ANSYS until convergence. Our results show the percentage of pressure losses with the variation of the angle of wind 0°, 20°, 40°, and 60° are 0.67 %, 0.52 %, 0.48 %, and 0.52 %. The effect of triangle strut in VAWT did not affect the wind flow to the VAWT blade. The results also indicated that the triangle strut could be applied in the multi-stage of VAWT system.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Alexandrina Untaroiu ◽  
Houston G. Wood ◽  
Paul E. Allaire ◽  
Robert J. Ribando

Vertical axis wind turbines have always been a controversial technology; claims regarding their benefits and drawbacks have been debated since the initial patent in 1931. Despite this contention, very little systematic vertical axis wind turbine research has been accomplished. Experimental assessments remain prohibitively expensive, while analytical analyses are limited by the complexity of the system. Numerical methods can address both concerns, but inadequate computing power hampered this field. Instead, approximating models were developed which provided some basis for study; but all these exhibited high error margins when compared with actual turbine performance data and were only useful in some operating regimes. Modern computers are capable of more accurate computational fluid dynamics analysis, but most research has focused on horizontal axis configurations or modeling of single blades rather than full geometries. In order to address this research gap, a systematic review of vertical axis wind-power turbine (VAWT) was undertaken, starting with establishment of a methodology for vertical axis wind turbine simulation that is presented in this paper. Replicating the experimental prototype, both 2D and 3D models of a three-bladed vertical axis wind turbine were generated. Full transient computational fluid dynamics (CFD) simulations using mesh deformation capability available in ansys-CFX were run from turbine start-up to operating speed and compared with the experimental data in order to validate the technique. A circular inner domain, containing the blades and the rotor, was allowed to undergo mesh deformation with a rotational velocity that varied with torque generated by the incoming wind. Results have demonstrated that a transient CFD simulation using a two-dimensional computational model can accurately predict vertical axis wind turbine operating speed within 12% error, with the caveat that intermediate turbine performance is not accurately captured.


Sign in / Sign up

Export Citation Format

Share Document