scholarly journals Optimal sizing of a solar thermal system in building based on simulation results of Polysun

Author(s):  
F F Fu ◽  
F Li
2021 ◽  
Author(s):  
Farzin Masoumi Rad

For a hypothetical solar community located in Toronto, Ontario, the viability of two separate combined heating and cooling systems were investigated. Four TRNSYS integrated models were developed for different cases. First, an existing heating only solar community was modeled and compared with published performance data as the base case with suggested improvements. The base case community was then used to develop a hypothetical solar community, located in Toronto, requiring both heating and cooling. In this second model an absorption chiller was added – Solar Thermal Chiller (STC) system. The chiller received its source heat from the solar thermal system with the supplemental heat from a natural gas boiler. The STC system was designed with two borehole thermal energy storage units (BTES). One was high-temperature BTES for the solar thermal energy storage, and another was medium-temperature BTES for the chillers’ heat rejection. The twenty year simulation results showed that by the fifth year in the heating season, the community operated with 100% solar fraction (SF). In the cooling season, the chiller received 18% of its required energy from the same number of solar collectors as the heating-only community system. The third model was based on the central heat pump system with borehole thermal storage for the heating and cooling, using a PV system as the heat pump power source - Heat Pump Photovoltaics (HPPV) system. The simulation results showed that the system operated favorably from the first year and did not have any significant performance degradation in 20 years. On average, the heat pumps performed with the seasonal COP of 3.3 in the heating mode and 5.9 in the cooling mode. The fourth system, Solar Thermal-Heat Pump Photovoltaics (ST-HPPV), a solar thermal system with borehole thermal energy storage as a supplemental heat source to the HPPV, was investigated. The simulation results showed that this system would be beneficial for a community with the annual heating and cooling difference of more than 75%. By adding a solar thermal system to the HPPV system, the heat pumps’ performance improved by 26% in the heating mode, and exhibited a negligible drop in the cooling mode.


2021 ◽  
Author(s):  
Farzin Masoumi Rad

For a hypothetical solar community located in Toronto, Ontario, the viability of two separate combined heating and cooling systems were investigated. Four TRNSYS integrated models were developed for different cases. First, an existing heating only solar community was modeled and compared with published performance data as the base case with suggested improvements. The base case community was then used to develop a hypothetical solar community, located in Toronto, requiring both heating and cooling. In this second model an absorption chiller was added – Solar Thermal Chiller (STC) system. The chiller received its source heat from the solar thermal system with the supplemental heat from a natural gas boiler. The STC system was designed with two borehole thermal energy storage units (BTES). One was high-temperature BTES for the solar thermal energy storage, and another was medium-temperature BTES for the chillers’ heat rejection. The twenty year simulation results showed that by the fifth year in the heating season, the community operated with 100% solar fraction (SF). In the cooling season, the chiller received 18% of its required energy from the same number of solar collectors as the heating-only community system. The third model was based on the central heat pump system with borehole thermal storage for the heating and cooling, using a PV system as the heat pump power source - Heat Pump Photovoltaics (HPPV) system. The simulation results showed that the system operated favorably from the first year and did not have any significant performance degradation in 20 years. On average, the heat pumps performed with the seasonal COP of 3.3 in the heating mode and 5.9 in the cooling mode. The fourth system, Solar Thermal-Heat Pump Photovoltaics (ST-HPPV), a solar thermal system with borehole thermal energy storage as a supplemental heat source to the HPPV, was investigated. The simulation results showed that this system would be beneficial for a community with the annual heating and cooling difference of more than 75%. By adding a solar thermal system to the HPPV system, the heat pumps’ performance improved by 26% in the heating mode, and exhibited a negligible drop in the cooling mode.


Author(s):  
Stephanie Drozek ◽  
Christopher Damm ◽  
Ryan Enot ◽  
Andrew Hjortland ◽  
Brandon Jackson ◽  
...  

The purpose of this paper is to describe the implementation of a laboratory-scale solar thermal system for the Renewable Energy Systems Laboratory at the Milwaukee School of Engineering (MSOE). The system development began as a student senior design project where students designed and fabricated a laboratory-scale solar thermal system to complement an existing commercial solar energy system on campus. The solar thermal system is designed specifically for educating engineers. This laboratory equipment, including a solar light simulator, allows for variation of operating parameters to investigate their impact on system performance. The equipment will be utilized in two courses: Applied Thermodynamics, and Renewable Energy Utilization. During the solar thermal laboratories performed in these courses, students conduct experiments based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) 93-2010 standard for testing and performance characterization of solar thermal systems. Their measurements are then used to quantify energy output, efficiency and losses of the system and subsystem components.


2021 ◽  
Vol 1059 (1) ◽  
pp. 012061
Author(s):  
B Kalidasan ◽  
R Divyabharathi ◽  
AK Pandey ◽  
C Subramaniyan ◽  
S Mohankumar

2019 ◽  
Vol 137 ◽  
pp. 56-66 ◽  
Author(s):  
Christodoulos N. Antoniadis ◽  
Georgios Martinopoulos

2021 ◽  
Author(s):  
Toktam Saeid

In October 2009, Team North competed in the US DOE 2009 Solar Decathlon competition. Team North's mission was to design and deliver North House, an energy efficient solar-powered home while training Canada's next generation of leaders in sustainable design. In North House, the PV system on the roof was the primary energy generation, complimented by a custom PV cladding system on the south, east and west facades. A solar assisted heat pump system, including a three-tank heat transfer and storage system, the horizontally mounted evacuated-tube solar thermal collectors on the roof and a variable capacity heat pump met the hot water and space heating demands. A second variable capacity heat pump was utilized for space cooling. The solar thermal system was studied using TRNSYS simulation. For the initial assessments the simulations were run for Baltimore. Then, the analyses were extended to different cities across Canada. In all scenarios the same house was linked to the system. The minimum annual solar fraction of the different cities was 64% and it rose up to 81%. Finally, the data measured during the competition were analyzed and compared with the data resulting from the simulation. According to competition measures, during the 10 days of competition in Washington DC, the PV system generated 271.6kWh of electricity and the solar thermal system produced 91.7kWh while the house consumption was 294.1kWh. As a result, North House was evidently a net-positive house.


Sign in / Sign up

Export Citation Format

Share Document