scholarly journals Risk management of chilli supply chains using weighted failure mode effect analysis

2021 ◽  
Vol 782 (2) ◽  
pp. 022004
Author(s):  
L Mailena ◽  
C Indrawanto ◽  
E P Astuti
Author(s):  
Pintu Prajapati ◽  
Jayesh Tamboli ◽  
Ashish Mishra

Abstract The fixed-dose combination (FDC) of montelukast sodium (MLS) and bilastine (BIL) is used for monotherapy in the patient with seasonal allergic rhinoconjuctivitis and asthma. According to the upcoming ICH (International Council for Harmonization) Q14 guideline, the development of the analytical method by the implementation of the Analytical Quality by Design (AQbD) approach based on principles of Quality Risk Management (QRM) and design of experiments (DoE) would be a regulatory requirement for the registration of new drug substance and product in ICH countries. Hence, a robust high-performance thin layer chromatography method has been developed, which was not previously reported for simultaneous estimation of MLS and BIL using risk and DoE-based enhanced AQbD approach. The analytical failure mode effect analysis (AFMEA) was started with the identification of potential analytical failure modes followed by their effect analysis by RPN ranking and filtering method. The DoE-based AFMEA was applied for optimization of high-risk analytical failure modes by central composite design using Design-Expert software. The method operable design ranges and control strategy was set for quality risk management throughout the lifecycle of the developed method. The developed method was validated as per ICH Q2 (R1) guideline. The method was applied for the assay of FDC, and results were found in compliance with the labeled claim.


Author(s):  
Zuber Mujeeb Shaikh

Failure Mode and Effects Analysis (FMEA) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects. The study revealed that the Risk Priority Number (RPN) was initially 450 and it has decreased to 90 after implementing all the actions in FMEA.


2020 ◽  
Vol 1 (1) ◽  
pp. 162-173
Author(s):  
Dinesh Kumar Kushwaha ◽  
◽  
Dilbagh Panchal ◽  
Anish Sachdeva ◽  
◽  
...  

Failure Mode Effect Analysis (FMEA) is popular and versatile approach applicable to risk assessment and safety improvement of a repairable engineering system. This method encompasses various fields such as manufacturing, healthcare, paper mill, thermal power industry, software industry, services, security etc. in terms of its application. In general, FMEA is based on Risk Priority Number (RPN) score which is found by product of probability of Occurrence (O), Severity of failure (S) and Failure Detection (D). As human judgement is approximate in nature, the accuracy of data obtained from FMEA members depend on degree of subjectivity. The subjective knowledge of members not only contains uncertainty but hesitation too which in turn, affect the results. Fuzzy FMEA considers uncertainty and vagueness of the data/ information obtained from experts. In order to take into account, the hesitation of experts and vague concept, in the present work we propose integrated framework based on Intuitionistic Fuzzy- Failure Mode Effect Analysis (IF-FMEA) and IF-Technique for Order Preference by Similarity to Ideal Solution (IF-TOPSIS) techniques to rank the listed failure causes. Failure cause Fibrizer (FR) was found to be the most critical failure cause with RPN score 0.500. IF-TOPSIS has been implemented within IF-FMEA to compare and verify ranking results obtained by both the IF based approaches. The proposed method was presented with its application for examining the risk assessment of cutting system in sugar mill industry situated in western Uttar Pradesh province of India. The result would be useful for the plant maintenance manager to fix the best maintenance schedule for improving availability of cutting system.


2018 ◽  
Vol 8 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Tsehaye Dedimas Beyene ◽  
◽  
Sisay Geremew Gebeyehu ◽  
Azemeraw Tadesse Mengistu ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document